Method of verbal operations and automorphisms of the category of free algebras
Algebra i logika, Tome 61 (2022) no. 2, pp. 127-149.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let an arbitrary variety of algebras and the category of all free finitely generated algebras in that variety be given. This paper is the second in a series of papers started in [Algebra and Logic, 61, No. 1, 1—15 (2022)] where we deal with automorphisms of the category of free finitely generated algebras. Here we describe in detail a method of verbal operations. The method provides a characterization of automorphisms of the category of all free finitely generated algebras in a given variety. The characterization plays a crucial role in universal algebraic geometry. We supply the reader with illuminating examples which clarify the method.
Keywords: variety of algebras, category of free finitely generated algebras, universal algebraic geometry over arbitrary variety of algebras, group of automorphisms, method of verbal operations.
@article{AL_2022_61_2_a0,
     author = {E. V. Aladova},
     title = {Method of verbal operations and automorphisms of the category of free algebras},
     journal = {Algebra i logika},
     pages = {127--149},
     publisher = {mathdoc},
     volume = {61},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2022_61_2_a0/}
}
TY  - JOUR
AU  - E. V. Aladova
TI  - Method of verbal operations and automorphisms of the category of free algebras
JO  - Algebra i logika
PY  - 2022
SP  - 127
EP  - 149
VL  - 61
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2022_61_2_a0/
LA  - ru
ID  - AL_2022_61_2_a0
ER  - 
%0 Journal Article
%A E. V. Aladova
%T Method of verbal operations and automorphisms of the category of free algebras
%J Algebra i logika
%D 2022
%P 127-149
%V 61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2022_61_2_a0/
%G ru
%F AL_2022_61_2_a0
E. V. Aladova. Method of verbal operations and automorphisms of the category of free algebras. Algebra i logika, Tome 61 (2022) no. 2, pp. 127-149. http://geodesic.mathdoc.fr/item/AL_2022_61_2_a0/

[1] B. Plotkin, “Seven lectures on universal algebraic geometry”, Groups, algebras and identities, Research workshop of the Israel Sci. Found. "‘Groups, algebras and identities"’. In honor of Boris Plotkin's 90th birthday (Bar-Ilan Univ. and The Hebrew Univ. Jerusalem, Israel, March 20-24, 2016), Contemp. Math., 726, ed. E. Plotkin, Am. Math. Soc., Providence, RI; Bar-Ilan Univ., Ramat Gan, 2019, 143–215 | DOI | MR | Zbl

[2] Proc. Steklov Inst. Math., 242 (2003), 165–196 | MR | Zbl

[3] B. Plotkin, E. Plotkin, “Multi-sorted logic and logical geometry: some problems”, Demonstr. Math., 48:4 (2015), 578–619 | MR | Zbl

[4] E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, Algebraicheskaya geometriya nad algebraicheskimi sistemami, Izd-vo SO RAN, Novosibirsk, 2016

[5] B. Plotkin, G. Zhitomirski, “Automorphisms of categories of free algebras of some varieties”, J. Algebra, 306:2 (2006), 344–367 | DOI | MR | Zbl

[6] A. Tsurkov, “Automorphic equivalence of algebras”, Int. J. Algebra Comput., 17:5/6 (2007), 1263–1271 | DOI | MR | Zbl

[7] A. Tsurkov, “Automorphic equivalence of many-sorted algebras”, Appl. Categ. Struct., 24:3 (2016), 209–240 | DOI | MR | Zbl

[8] E. V. Aladova, “Avtomorfizmy kategorii svobodnykh konechno porozhdennykh algebr”, Algebra i logika, 61:1 (2022), 3–22 | MR | Zbl

[9] S. Mac Lane, Categories for the working mathematician, Grad. Texts Math., 5, Springer-Verlag, New York-Heidelberg-Berlin, 1971 | MR | Zbl

[10] A. Tsurkov, “Automorphic equivalence in the classical varieties of linear algebras”, Int. J. Algebra Comput., 27:8 (2017), 973–999 | DOI | MR | Zbl

[11] G. Mashevitzky, B. M. Schein, “Automorphisms of the endomorphism semigroup of a free monoid or a free semigroup”, Proc. Am. Math. Soc., 131:6 (2003), 1655–1660 | DOI | MR | Zbl

[12] G. Mashevitzky, B. M. Schein, G. I. Zhitomirski, “Automorphisms of the endomorphism semigroup of a free inverse semigroup”, Commun. Algebra, 34:10 (2006), 3569–3584 | DOI | MR | Zbl

[13] E. S. Lyapin, Polugruppy, Gos. izd-vo fiz.-matem. lit-ry, M., 1960 | MR

[14] G. Mashevitzky, B. I. Plotkin, “On automorphisms of the endomorphism semigroup of a free universal algebra”, Int. J. Algebra Comput., 17:5/6 (2007), 1085–1106 | DOI | MR | Zbl

[15] A. G. Kurosh, Teoriya grupp, Nauka, M., 1967 | MR