Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2022_61_1_a3, author = {V. V. Lodeishchikova and S. A. Shakhova}, title = {Levi classes of quasivarieties of nilpotent groups of exponent $p^s$}, journal = {Algebra i logika}, pages = {77--92}, publisher = {mathdoc}, volume = {61}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2022_61_1_a3/} }
V. V. Lodeishchikova; S. A. Shakhova. Levi classes of quasivarieties of nilpotent groups of exponent $p^s$. Algebra i logika, Tome 61 (2022) no. 1, pp. 77-92. http://geodesic.mathdoc.fr/item/AL_2022_61_1_a3/
[1] F. W. Levi, “Groups in which the commutator operation satisfies certain algebraic conditions”, J. Indian Math. Soc., New Ser., 6 (1942), 87–97
[2] R.F. Morse, “Levi-properties generated by varieties”, The mathematical legacy of Wilhelm Magnus. Groups, geometry and special functions, Conf. on the legacy of Wilhelm Magnus (May 1-3, 1992, Polytechnic Univ. Brooklyn, NY, USA), Contemp. Math., 169, eds. W. Abikoff et al., Am. Math. Soc., Providence, RI, 1994, 467–474
[3] L. C. Kappe, W. P. Kappe, “On three-Engel groups”, Bull. Aust. Math. Soc., 7:3 (1972), 391–405
[4] K. W. Weston, “${\mathrm{ZA}}$-groups which satisfy the $m$-th Engel condition”, Ill. J. Math., 8 (1964), 458–472
[5] H. Heineken, “Engelsche Elemente der Länge drei”, Ill. J. Math., 5 (1961), 681–707
[6] A. I. Budkin, “Kvazimnogoobraziya Levi”, Sib. matem. zh., 40:2 (1999), 266–270
[7] A. I. Budkin, “Operator $L_{n}$ na kvazimnogoobraziyakh universalnykh algebr”, Sib. matem. zh., 60:4 (2019), 724–733
[8] A. I. Budkin, L. V. Taranina, “O kvazimnogoobraziyakh Levi, porozhdennykh nilpotentnymi gruppami”, Sib. matem. zh., 41:2 (2000), 270–277
[9] V. V. Lodeischikova, “O klassakh Levi, porozhdennykh nilpotentnymi gruppami”, Sib. matem. zh., 51:6 (2010), 1359–1366
[10] V. V. Lodeischikova, “O kvazimnogoobraziyakh Levi eksponenty $p^s$”, Algebra i logika, 50:1 (2011), 26–41
[11] S. A. Shakhova, “Ob aksiomaticheskom range klassov Levi”, Algebra i logika, 57:5 (2018), 587–600
[12] S. A. Shakhova, “Klassy Levi kvazimnogoobrazii grupp s kommutantom eksponenty $p$”, Algebra i logika, 60:5 (2021), 510–524
[13] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1977
[14] Kh. Neiman, Mnogoobraziya grupp, Mir, M., 1969
[15] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970
[16] A. I. Budkin, Kvazimnogoobraziya grupp, Izd-vo Alt. gos. un-ta, Barnaul, 2002
[17] V. A. Gorbunov, Algebraicheskaya teoriya kvazimnogoobrazii, Sibirskaya shkola algebry i logiki, Nauch. kniga, Novosibirsk, 1999
[18] A. I. Budkin, V. A. Gorbunov, “K teorii kvazimnogoobrazii algebraicheskikh sistem”, Algebra i logika, 14:2 (1975), 123–142
[19] S. A. Shakhova, “On the lattice of quasivarieties of nilpotent groups of class 2”, Sib. Adv. Math., 7:3 (1997), 98–125
[20] A. N. Fedorov, “O podkvazimnogoobraziyakh nilpotentnykh minimalnykh ne abelevykh mnogoobrazii grupp”, Sib. matem. zh., 21:6 (1980), 117–131