Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2022_61_1_a2, author = {B. S. Kalmurzaev and N. A. Bazhenov and M. A. Torebekova}, title = {Index sets for classes of positive preorders}, journal = {Algebra i logika}, pages = {42--76}, publisher = {mathdoc}, volume = {61}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2022_61_1_a2/} }
B. S. Kalmurzaev; N. A. Bazhenov; M. A. Torebekova. Index sets for classes of positive preorders. Algebra i logika, Tome 61 (2022) no. 1, pp. 42-76. http://geodesic.mathdoc.fr/item/AL_2022_61_1_a2/
[1] Yu. L. Ershov, “Pozitivnye ekvivalentnosti”, Algebra i logika, 10:6 (1971), 620–650
[2] Yu. L. Ershov, Teoriya numeratsii, Nauka, M., 1977
[3] C. Bernardi, “On the relation provable equivalence and on partitions in effectively inseparable sets”, Stud. Log., 40:1 (1981), 29–37
[4] C. Bernardi, A. Sorbi, “Classifying positive equivalence relations”, J. Symb. Log., 48:3 (1983), 529–538
[5] A. H. Lachlan, “A note on positive equivalence relations”, Z. Math. Logik Grundlagen Math., 33 (1987), 43–46
[6] S. Gao, P. Gerdes, “Computably enumerable equivalence relations”, Stud. Log., 67:1 (2001), 27–59
[7] U. Andrews, A. Sorbi, “Joins and meets in the structure of ceers”, Computability, 8:3/4 (2019), 193–241
[8] U. Andrews, N. Schweber, A. Sorbi, “Self-full ceers and the uniform join operator”, J. Log. Comput., 30:3 (2020), 765–783
[9] U. Andrews, N. Schweber, A. Sorbi, “The theory of ceers computes true arithmetic”, Ann. Pure Appl. Logic, 171:8 (2020), 102811, 22 pp.
[10] U. Andrews, S. Lempp, J. S. Miller, K. M. Ng, L. S. Mauro, A. Sorbi, “Universal computably enumerable equivalence relations”, J. Symb. Log., 79:1 (2014), 60–88
[11] U. Andrews, A. Sorbi, “The complexity of index sets of classes of computably enumerable equivalence relations”, J. Symb. Log., 81:4 (2016), 1375–1395
[12] S. Badaev, A. Sorbi, “Weakly precomplete computably enumerable equivalence relations”, Math. Log. Q, 62:1/2 (2016), 111–127
[13] U. Andrews, S. A. Badaev, “On isomorphism classes of computably enumerable equivalence relations”, J. Symb. Log., 85:1 (2020), 61–86
[14] D. K. Kabylzhanova, “O pozitivnykh predporyadkakh”, Algebra i logika, 57:3 (2018), 279–284
[15] N. A. Bazhenov, B. S. Kalmurzaev, “O temnykh vychislimo perechislimykh otnosheniyakh ekvivalentnosti”, Sib. matem. zh., 59:1 (2018), 29–40
[16] S. A. Badaev, N. A. Bazhenov, B. S. Kalmurzaev, “O strukture pozitivnykh predporyadkov”, Algebra i logika, 59:3 (2020), 293–314
[17] R. I. Soare, Turing computability. Theory and applications, Theory Appl. Comput., Springer, Berlin, 2016
[18] S. A. Badaev, B. S. Kalmurzayev, D. K. Kabylzhanova, K. Sh. Abeshev, “Universal positive preorders”, Izvestiya NAN RK. Ser. fiz.-mat., 2018, no. 6(322), 49–53
[19] U. Andrews, S. Badaev, A. Sorbi, “A survey on universal computably enumerable equivalence relations”, Computability and complexity, Essays dedicated to Rodney G. Downey on the occasion of his 60th birthday, Lect. Notes Comput. Sci., 10010, eds. A. Day et al., Springer, Cham, 2017, 418–451
[20] A. Gavrushkin, B. Khoussainov, F. Stephan, “Reducibilities among equivalence relations induced by recursively enumerable structures”, Theor. Comput. Sci., 612 (2016), 137–152