Inner constructivizability of functional structures
Algebra i logika, Tome 61 (2022) no. 1, pp. 23-41

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct and look at examples of (functional) structures the hereditarily finite superstructures over which have rank of inner constructivizability 0.
Keywords: functional structure, hereditarily finite superstructure, inner constructivizability.
@article{AL_2022_61_1_a1,
     author = {A. S. Burnistov and A. I. Stukachev},
     title = {Inner constructivizability of functional structures},
     journal = {Algebra i logika},
     pages = {23--41},
     publisher = {mathdoc},
     volume = {61},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2022_61_1_a1/}
}
TY  - JOUR
AU  - A. S. Burnistov
AU  - A. I. Stukachev
TI  - Inner constructivizability of functional structures
JO  - Algebra i logika
PY  - 2022
SP  - 23
EP  - 41
VL  - 61
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2022_61_1_a1/
LA  - ru
ID  - AL_2022_61_1_a1
ER  - 
%0 Journal Article
%A A. S. Burnistov
%A A. I. Stukachev
%T Inner constructivizability of functional structures
%J Algebra i logika
%D 2022
%P 23-41
%V 61
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2022_61_1_a1/
%G ru
%F AL_2022_61_1_a1
A. S. Burnistov; A. I. Stukachev. Inner constructivizability of functional structures. Algebra i logika, Tome 61 (2022) no. 1, pp. 23-41. http://geodesic.mathdoc.fr/item/AL_2022_61_1_a1/