Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2021_60_6_a6, author = {S. O. Speranski}, title = {Modal bilattice logic and its extensions}, journal = {Algebra i logika}, pages = {612--635}, publisher = {mathdoc}, volume = {60}, number = {6}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2021_60_6_a6/} }
S. O. Speranski. Modal bilattice logic and its extensions. Algebra i logika, Tome 60 (2021) no. 6, pp. 612-635. http://geodesic.mathdoc.fr/item/AL_2021_60_6_a6/
[1] N. D. Belnap jun., “How a computer should think”, Contemporary aspects of philosophy, ed. G. Ryle, Oriel Press, 1977, 30–56
[2] N. D. Belnap jun., “A useful four-valued logic”, Modern uses of multiple-valued logic, eds. J. M. Dunn, G. Epstein, D. Reidel, 1977, 5–37 | DOI | MR
[3] J. M. Dunn, “Intuitive semantics for first-degree entailments and ‘coupled trees’”, Philos. Stud., 29:3 (1976), 149–168 | DOI | MR | Zbl
[4] A. Jung, U. Rivieccio, “Kripke semantics for modal bilattice logic”, Proceedings of the 2013 28th annual ACM/IEEE symposium on logic in computer science, LICS 2013 (Tulane Univ., New Orleans, LA, USA, June 25-28, 2013), IEEE Comput. Soc., Los Alamitos, CA, 2013, 438–447 | DOI | MR | Zbl
[5] U. Rivieccio, A. Jung, R. Jansana, “Four-valued modal logic: Kripke semantics and duality”, J. Log. Comput., 27:1 (2017), 155–199 | DOI | MR | Zbl
[6] O. Arieli, A. Avron, “Reasoning with logical bilattices”, J. Logic, Lang. Inf., 5:1 (1996), 25–63 | DOI | MR | Zbl
[7] S. P. Odintsov, H. Wansing, “Modal logics with Belnapian truth values”, J. Appl. Non-Class. Log., 20:3 (2010), 279–301 | DOI | MR | Zbl
[8] S. P. Odintsov, E. I. Latkin, “$\mathsf{BK}$-lattices. Algebraic semantics for Belnapian modal logics”, Stud. Log., 100:1/2 (2012), 319–338 | DOI | MR | Zbl
[9] S. P. Odintsov, S. O. Speranski, “The lattice of Belnapian modal logics: special extensions and counterparts”, Log. Log. Philos., 25:1 (2016), 3–33 | MR | Zbl
[10] S. P. Odintsov, S. O. Speranski, “Belnap–Dunn modal logics: truth constants vs. truth values”, Rev. Symb. Log., 13:2 (2020), 416–435 | DOI | MR | Zbl
[11] S. P. Odintsov, Constructive negations and paraconsistency, Trends Log. Stud. Log. Libr., 26, Springer-Verlag, Dordrecht, 2008 | MR | Zbl
[12] D. M. Gabbay, L. Maksimova, Interpolation and definability: modal and intuitionistic logics, Oxford Logic Guides, Oxford Sci. Publ., 46, Clarendon Press, Oxford, 2005 | MR | Zbl
[13] S. P. Odintsov, H. Wansing, “Disentangling $\mathsf{FDE}$-based paraconsistent modal logics”, Stud. Log., 105:6 (2017), 1221–1254 | DOI | MR | Zbl
[14] S. Drobyshevich, “A general framework for $\mathsf{FDE}$-based modal logics”, Stud. Log., 108:6 (2020), 1281–1306 | DOI | MR | Zbl