Modal bilattice logic and its extensions
Algebra i logika, Tome 60 (2021) no. 6, pp. 612-635

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the lattices of extensions of three logics: (1) modal bilattice logic; (2) full Belnap–Dunn bimodal logic; (3) classical bimodal logic. It is proved that these lattices are isomorphic to each other. Furthermore, the isomorphisms constructed preserve various nice properties, such as tabularity, pretabularity, decidability or Craig's interpolation property.
Keywords: many-valued modal logic, strong negation, first-degree entailment, algebraic logic.
@article{AL_2021_60_6_a6,
     author = {S. O. Speranski},
     title = {Modal bilattice logic and its extensions},
     journal = {Algebra i logika},
     pages = {612--635},
     publisher = {mathdoc},
     volume = {60},
     number = {6},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2021_60_6_a6/}
}
TY  - JOUR
AU  - S. O. Speranski
TI  - Modal bilattice logic and its extensions
JO  - Algebra i logika
PY  - 2021
SP  - 612
EP  - 635
VL  - 60
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2021_60_6_a6/
LA  - ru
ID  - AL_2021_60_6_a6
ER  - 
%0 Journal Article
%A S. O. Speranski
%T Modal bilattice logic and its extensions
%J Algebra i logika
%D 2021
%P 612-635
%V 60
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2021_60_6_a6/
%G ru
%F AL_2021_60_6_a6
S. O. Speranski. Modal bilattice logic and its extensions. Algebra i logika, Tome 60 (2021) no. 6, pp. 612-635. http://geodesic.mathdoc.fr/item/AL_2021_60_6_a6/