Modal bilattice logic and its extensions
Algebra i logika, Tome 60 (2021) no. 6, pp. 612-635.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the lattices of extensions of three logics: (1) modal bilattice logic; (2) full Belnap–Dunn bimodal logic; (3) classical bimodal logic. It is proved that these lattices are isomorphic to each other. Furthermore, the isomorphisms constructed preserve various nice properties, such as tabularity, pretabularity, decidability or Craig's interpolation property.
Keywords: many-valued modal logic, strong negation, first-degree entailment, algebraic logic.
@article{AL_2021_60_6_a6,
     author = {S. O. Speranski},
     title = {Modal bilattice logic and its extensions},
     journal = {Algebra i logika},
     pages = {612--635},
     publisher = {mathdoc},
     volume = {60},
     number = {6},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2021_60_6_a6/}
}
TY  - JOUR
AU  - S. O. Speranski
TI  - Modal bilattice logic and its extensions
JO  - Algebra i logika
PY  - 2021
SP  - 612
EP  - 635
VL  - 60
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2021_60_6_a6/
LA  - ru
ID  - AL_2021_60_6_a6
ER  - 
%0 Journal Article
%A S. O. Speranski
%T Modal bilattice logic and its extensions
%J Algebra i logika
%D 2021
%P 612-635
%V 60
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2021_60_6_a6/
%G ru
%F AL_2021_60_6_a6
S. O. Speranski. Modal bilattice logic and its extensions. Algebra i logika, Tome 60 (2021) no. 6, pp. 612-635. http://geodesic.mathdoc.fr/item/AL_2021_60_6_a6/

[1] N. D. Belnap jun., “How a computer should think”, Contemporary aspects of philosophy, ed. G. Ryle, Oriel Press, 1977, 30–56

[2] N. D. Belnap jun., “A useful four-valued logic”, Modern uses of multiple-valued logic, eds. J. M. Dunn, G. Epstein, D. Reidel, 1977, 5–37 | DOI | MR

[3] J. M. Dunn, “Intuitive semantics for first-degree entailments and ‘coupled trees’”, Philos. Stud., 29:3 (1976), 149–168 | DOI | MR | Zbl

[4] A. Jung, U. Rivieccio, “Kripke semantics for modal bilattice logic”, Proceedings of the 2013 28th annual ACM/IEEE symposium on logic in computer science, LICS 2013 (Tulane Univ., New Orleans, LA, USA, June 25-28, 2013), IEEE Comput. Soc., Los Alamitos, CA, 2013, 438–447 | DOI | MR | Zbl

[5] U. Rivieccio, A. Jung, R. Jansana, “Four-valued modal logic: Kripke semantics and duality”, J. Log. Comput., 27:1 (2017), 155–199 | DOI | MR | Zbl

[6] O. Arieli, A. Avron, “Reasoning with logical bilattices”, J. Logic, Lang. Inf., 5:1 (1996), 25–63 | DOI | MR | Zbl

[7] S. P. Odintsov, H. Wansing, “Modal logics with Belnapian truth values”, J. Appl. Non-Class. Log., 20:3 (2010), 279–301 | DOI | MR | Zbl

[8] S. P. Odintsov, E. I. Latkin, “$\mathsf{BK}$-lattices. Algebraic semantics for Belnapian modal logics”, Stud. Log., 100:1/2 (2012), 319–338 | DOI | MR | Zbl

[9] S. P. Odintsov, S. O. Speranski, “The lattice of Belnapian modal logics: special extensions and counterparts”, Log. Log. Philos., 25:1 (2016), 3–33 | MR | Zbl

[10] S. P. Odintsov, S. O. Speranski, “Belnap–Dunn modal logics: truth constants vs. truth values”, Rev. Symb. Log., 13:2 (2020), 416–435 | DOI | MR | Zbl

[11] S. P. Odintsov, Constructive negations and paraconsistency, Trends Log. Stud. Log. Libr., 26, Springer-Verlag, Dordrecht, 2008 | MR | Zbl

[12] D. M. Gabbay, L. Maksimova, Interpolation and definability: modal and intuitionistic logics, Oxford Logic Guides, Oxford Sci. Publ., 46, Clarendon Press, Oxford, 2005 | MR | Zbl

[13] S. P. Odintsov, H. Wansing, “Disentangling $\mathsf{FDE}$-based paraconsistent modal logics”, Stud. Log., 105:6 (2017), 1221–1254 | DOI | MR | Zbl

[14] S. Drobyshevich, “A general framework for $\mathsf{FDE}$-based modal logics”, Stud. Log., 108:6 (2020), 1281–1306 | DOI | MR | Zbl