Virtual algebraic isomorphisms between predicate calculi of finite rich signatures
Algebra i logika, Tome 60 (2021) no. 6, pp. 587-611

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that every two predicate calculi of finite rich signatures are algebraically virtually isomorphic, i.e., some of their Cartesian extensions are algebraically isomorphic. As an important application, it is stated that for predicate calculi in any two finite rich signatures, there exists a computable isomorphism between their Tarski–Lindenbaum algebras which preserves all model-theoretic properties of an algebraic type corresponding to the real practice of research in model theory.
Keywords: predicate calculi, Tarski–Lindenbaum algebra, virtual algebraic isomorphisms.
@article{AL_2021_60_6_a5,
     author = {M. G. Peretyat'kin},
     title = {Virtual algebraic isomorphisms between predicate calculi of finite rich signatures},
     journal = {Algebra i logika},
     pages = {587--611},
     publisher = {mathdoc},
     volume = {60},
     number = {6},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2021_60_6_a5/}
}
TY  - JOUR
AU  - M. G. Peretyat'kin
TI  - Virtual algebraic isomorphisms between predicate calculi of finite rich signatures
JO  - Algebra i logika
PY  - 2021
SP  - 587
EP  - 611
VL  - 60
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2021_60_6_a5/
LA  - ru
ID  - AL_2021_60_6_a5
ER  - 
%0 Journal Article
%A M. G. Peretyat'kin
%T Virtual algebraic isomorphisms between predicate calculi of finite rich signatures
%J Algebra i logika
%D 2021
%P 587-611
%V 60
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2021_60_6_a5/
%G ru
%F AL_2021_60_6_a5
M. G. Peretyat'kin. Virtual algebraic isomorphisms between predicate calculi of finite rich signatures. Algebra i logika, Tome 60 (2021) no. 6, pp. 587-611. http://geodesic.mathdoc.fr/item/AL_2021_60_6_a5/