Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2021_60_6_a5, author = {M. G. Peretyat'kin}, title = {Virtual algebraic isomorphisms between predicate calculi of finite rich signatures}, journal = {Algebra i logika}, pages = {587--611}, publisher = {mathdoc}, volume = {60}, number = {6}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2021_60_6_a5/} }
M. G. Peretyat'kin. Virtual algebraic isomorphisms between predicate calculi of finite rich signatures. Algebra i logika, Tome 60 (2021) no. 6, pp. 587-611. http://geodesic.mathdoc.fr/item/AL_2021_60_6_a5/
[1] W. Hodges, A shorter model theory, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl
[2] H. Rogers, Theory of recursive functions and effective computability, McGraw-Hill, New York, 1967 ; Kh. Rodzhers, Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972 | MR | Zbl | MR
[3] S. S. Goncharov, Yu. L. Ershov, Konstruktivnye modeli, Sibirskaya shkola algebry i logiki, Nauchnaya kniga, Novosibirsk, 1999 | MR
[4] M. G. Peretyatkin, Konechno aksiomatiziruemye teorii, Sibirskaya shkola algebry i logiki, Nauchnaya kniga, Novosibirsk, 1997 | MR
[5] M. G. Peretyat'kin, “First-order combinatorics and a definition to the concept of a model-theoretic property with demonstration of possible applications”, Algebra and Model Theory 11, eds. A. G. Pinus et al., Novosibirsk State Tech. Univ., Novosibirsk, 2017, 86–101
[6] W. Hanf, “Model-theoretic methods in the study of elementary logic”, Theory of Models, Proc. 1963 Int. Symp. Berkeley, North-Holland, Amsterdam, 1965, 132–145 | MR
[7] J. R. Shoenfield, Mathematical logic, Addison-Wesley Publ. Co, Reading, Mass.-Menlo Park, Cal.-London-Don Mills, Ontario, 1967 | MR | Zbl
[8] M. G. Peretyat'kin, “A technical prototype of the finite signature reduction procedure for the algebraic mode of definability”, Mat. Zh., 19:2 (2019), 78–104 | Zbl
[9] M. G. Peretyat'kin, “The property of being a model complete theory is preserved by Cartesian extensions”, Sib. elektron. matem. izv., 17 (2020), 1540–1551 http://semr.math.nsc.ru/v17/p1540-1551.pdf | MR | Zbl
[10] M. G. Peretyat'kin, “Invertible multi-dimensional interpretations versus virtual isomorphisms of first-order theories”, Mat. Zh., 16:4 (2016), 166–203 | Zbl
[11] W. P. Hanf, D. Myers, “Boolean sentence algebras: Isomorphism constructions”, J. Symb. Log., 48:2 (1983), 329–338 | DOI | MR | Zbl
[12] D. Myers, “Lindenbaum-Tarski algebras”, Handbook of Boolean algebras, v. 3, eds. J. D. Monk, R. Bonnet, North-Holland, Amsterdam etc., 1989, 1167–1195 | MR
[13] D. Myers, “An interpretive isomorphism between binary and ternary relations”, Structures in logic and computer science. A selection of essays in honor of Andrzej Ehrenfeucht (65th birthday on August 8, 1997), Lect. Notes Comput. Sci., 1261, eds. J. Mycielski et al., Springer, Berlin, 1997, 84–105 | DOI | MR | Zbl
[14] M. G. Peretyat'kin, “There is a virtual isomorphism between any two undecidable predicate calculi of finite signatures”, Mezhd. konf. "‘Maltsevskie chteniya"’, Tez. dokl. (21–25 noyabrya, 2016, Novosibirsk), IM SO RAN i NGU, Novosibirsk, 2016, 208 http://math.nsc.ru/conference/malmeet/16/malmeet16.pdf
[15] M. G. Peretyat'kin, “Hanf's isomorphisms between predicate calculi of finite rich signatures preserving all real model-theoretic properties”, Mezhd. konf. "‘Maltsevskie chteniya"’, Tez. dokl. (19–23 avgusta, 2019, Novosibirsk), IM SO RAN i NGU, Novosibirsk, 2019, 202 http://math.nsc.ru/conference/malmeet/19/maltsev19.pdf