Virtual algebraic isomorphisms between predicate calculi of finite rich signatures
Algebra i logika, Tome 60 (2021) no. 6, pp. 587-611.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that every two predicate calculi of finite rich signatures are algebraically virtually isomorphic, i.e., some of their Cartesian extensions are algebraically isomorphic. As an important application, it is stated that for predicate calculi in any two finite rich signatures, there exists a computable isomorphism between their Tarski–Lindenbaum algebras which preserves all model-theoretic properties of an algebraic type corresponding to the real practice of research in model theory.
Keywords: predicate calculi, Tarski–Lindenbaum algebra, virtual algebraic isomorphisms.
@article{AL_2021_60_6_a5,
     author = {M. G. Peretyat'kin},
     title = {Virtual algebraic isomorphisms between predicate calculi of finite rich signatures},
     journal = {Algebra i logika},
     pages = {587--611},
     publisher = {mathdoc},
     volume = {60},
     number = {6},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2021_60_6_a5/}
}
TY  - JOUR
AU  - M. G. Peretyat'kin
TI  - Virtual algebraic isomorphisms between predicate calculi of finite rich signatures
JO  - Algebra i logika
PY  - 2021
SP  - 587
EP  - 611
VL  - 60
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2021_60_6_a5/
LA  - ru
ID  - AL_2021_60_6_a5
ER  - 
%0 Journal Article
%A M. G. Peretyat'kin
%T Virtual algebraic isomorphisms between predicate calculi of finite rich signatures
%J Algebra i logika
%D 2021
%P 587-611
%V 60
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2021_60_6_a5/
%G ru
%F AL_2021_60_6_a5
M. G. Peretyat'kin. Virtual algebraic isomorphisms between predicate calculi of finite rich signatures. Algebra i logika, Tome 60 (2021) no. 6, pp. 587-611. http://geodesic.mathdoc.fr/item/AL_2021_60_6_a5/

[1] W. Hodges, A shorter model theory, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl

[2] H. Rogers, Theory of recursive functions and effective computability, McGraw-Hill, New York, 1967 ; Kh. Rodzhers, Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972 | MR | Zbl | MR

[3] S. S. Goncharov, Yu. L. Ershov, Konstruktivnye modeli, Sibirskaya shkola algebry i logiki, Nauchnaya kniga, Novosibirsk, 1999 | MR

[4] M. G. Peretyatkin, Konechno aksiomatiziruemye teorii, Sibirskaya shkola algebry i logiki, Nauchnaya kniga, Novosibirsk, 1997 | MR

[5] M. G. Peretyat'kin, “First-order combinatorics and a definition to the concept of a model-theoretic property with demonstration of possible applications”, Algebra and Model Theory 11, eds. A. G. Pinus et al., Novosibirsk State Tech. Univ., Novosibirsk, 2017, 86–101

[6] W. Hanf, “Model-theoretic methods in the study of elementary logic”, Theory of Models, Proc. 1963 Int. Symp. Berkeley, North-Holland, Amsterdam, 1965, 132–145 | MR

[7] J. R. Shoenfield, Mathematical logic, Addison-Wesley Publ. Co, Reading, Mass.-Menlo Park, Cal.-London-Don Mills, Ontario, 1967 | MR | Zbl

[8] M. G. Peretyat'kin, “A technical prototype of the finite signature reduction procedure for the algebraic mode of definability”, Mat. Zh., 19:2 (2019), 78–104 | Zbl

[9] M. G. Peretyat'kin, “The property of being a model complete theory is preserved by Cartesian extensions”, Sib. elektron. matem. izv., 17 (2020), 1540–1551 http://semr.math.nsc.ru/v17/p1540-1551.pdf | MR | Zbl

[10] M. G. Peretyat'kin, “Invertible multi-dimensional interpretations versus virtual isomorphisms of first-order theories”, Mat. Zh., 16:4 (2016), 166–203 | Zbl

[11] W. P. Hanf, D. Myers, “Boolean sentence algebras: Isomorphism constructions”, J. Symb. Log., 48:2 (1983), 329–338 | DOI | MR | Zbl

[12] D. Myers, “Lindenbaum-Tarski algebras”, Handbook of Boolean algebras, v. 3, eds. J. D. Monk, R. Bonnet, North-Holland, Amsterdam etc., 1989, 1167–1195 | MR

[13] D. Myers, “An interpretive isomorphism between binary and ternary relations”, Structures in logic and computer science. A selection of essays in honor of Andrzej Ehrenfeucht (65th birthday on August 8, 1997), Lect. Notes Comput. Sci., 1261, eds. J. Mycielski et al., Springer, Berlin, 1997, 84–105 | DOI | MR | Zbl

[14] M. G. Peretyat'kin, “There is a virtual isomorphism between any two undecidable predicate calculi of finite signatures”, Mezhd. konf. "‘Maltsevskie chteniya"’, Tez. dokl. (21–25 noyabrya, 2016, Novosibirsk), IM SO RAN i NGU, Novosibirsk, 2016, 208 http://math.nsc.ru/conference/malmeet/16/malmeet16.pdf

[15] M. G. Peretyat'kin, “Hanf's isomorphisms between predicate calculi of finite rich signatures preserving all real model-theoretic properties”, Mezhd. konf. "‘Maltsevskie chteniya"’, Tez. dokl. (19–23 avgusta, 2019, Novosibirsk), IM SO RAN i NGU, Novosibirsk, 2019, 202 http://math.nsc.ru/conference/malmeet/19/maltsev19.pdf