Complexity of the problem of being equivalent to Horn formulas
Algebra i logika, Tome 60 (2021) no. 6, pp. 575-586

Voir la notice de l'article provenant de la source Math-Net.Ru

We look at the complexity of the existence problem for a Horn sentence (identity, quasi-identity, $\forall$-sentence, $\exists$-sentence) equivalent to a given one. It is proved that if the signature contains at least one symbol of arity $k\geqslant 2$, then each of the problems mentioned is an $m$-complete $\Sigma^0_1$ set.
Keywords: Horn formula, $m$-reducibility, $\Sigma^0_1$ set.
@article{AL_2021_60_6_a4,
     author = {N. T. Kogabaev},
     title = {Complexity of the problem of being equivalent to {Horn} formulas},
     journal = {Algebra i logika},
     pages = {575--586},
     publisher = {mathdoc},
     volume = {60},
     number = {6},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2021_60_6_a4/}
}
TY  - JOUR
AU  - N. T. Kogabaev
TI  - Complexity of the problem of being equivalent to Horn formulas
JO  - Algebra i logika
PY  - 2021
SP  - 575
EP  - 586
VL  - 60
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2021_60_6_a4/
LA  - ru
ID  - AL_2021_60_6_a4
ER  - 
%0 Journal Article
%A N. T. Kogabaev
%T Complexity of the problem of being equivalent to Horn formulas
%J Algebra i logika
%D 2021
%P 575-586
%V 60
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2021_60_6_a4/
%G ru
%F AL_2021_60_6_a4
N. T. Kogabaev. Complexity of the problem of being equivalent to Horn formulas. Algebra i logika, Tome 60 (2021) no. 6, pp. 575-586. http://geodesic.mathdoc.fr/item/AL_2021_60_6_a4/