Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2021_60_6_a0, author = {P. E. Alaev and V. L. Selivanov}, title = {Fields of algebraic numbers computable in polynomial time. {II}}, journal = {Algebra i logika}, pages = {533--548}, publisher = {mathdoc}, volume = {60}, number = {6}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2021_60_6_a0/} }
P. E. Alaev; V. L. Selivanov. Fields of algebraic numbers computable in polynomial time. II. Algebra i logika, Tome 60 (2021) no. 6, pp. 533-548. http://geodesic.mathdoc.fr/item/AL_2021_60_6_a0/
[1] P. E. Alaev, V. L. Selivanov, “Polya algebraicheskikh chisel, vychislimye za polinomialnoe vremya. I”, Algebra i logika, 58:6 (2019), 673–705 | MR
[2] P. Alaev, V. Selivanov, “Polynomial-time presentations of algebraic number fields”, Sailing routes in the world of computation, 14th conf. comput. Europe CiE 2018 (Kiel, Germany, July 30 – August 3, 2018), Lect. Notes Comput. Sci., 10936, eds. F. Manea et al., Springer, Cham, 2018, 20–29 | DOI | MR | Zbl
[3] P. E. Alaev, V. L. Selivanov, “Polinomialnaya vychislimost polei algebraicheskikh chisel”, Dokl. RAN, 481:4 (2018), 355–357 | Zbl
[4] P. E. Alaev, “Suschestvovanie i edinstvennost struktur, vychislimykh za polinomialnoe vremya”, Algebra i logika, 55:1 (2016), 106–112 | MR | Zbl
[5] P. E. Alaev, “Struktury, vychislimye za polinomialnoe vremya. I”, Algebra i logika, 55:6 (2016), 647–669 | MR
[6] D. Cenzer, J. B. Remmel, “Complexity theoretic model theory and algebra”, Handbook of recursive mathematics, v. 1, Stud. Logic Found. Math., 138, Recursive model theory, eds. Yu. L. Ershov et al., Elsevier,, Amsterdam, 1998, 381–513 | DOI | MR | Zbl
[7] A. I. Maltsev, “Konstruktivnye algebry. 1”, UMN, 16:3 (1961), 3–60 | MR | Zbl
[8] S. S. Goncharov, Yu. L. Ershov, Konstruktivnye modeli, Sibirskaya shkola algebry i logiki, Nauchnaya kniga, Novosibirsk, 1999 | MR
[9] M. Coste, M. F. Roy, “Thom's lemma, the coding of real algebraic numbers and the computation of the topology of semi-algebraic sets”, J. Symb. Comput., 5:1/2 (1988), 121–129 | DOI | MR | Zbl
[10] Yu. L. Ershov, Teoriya numeratsii, Nauka, M., 1977 | MR
[11] P. E. Alaev, “Polinomialno vychislimye struktury s konechnym chislom porozhdayuschikh”, Algebra i logika, 59:3 (2020), 385–394 | MR | Zbl
[12] P. E. Alaev, “Konechno porozhdennye struktury, vychislimye za polinomialnoe vremya”, Sib. matem. zh. (to appear)
[13] A. Blass, Yu. Gurevich, “Equivalence relations, invariants, and normal forms”, SIAM J. Comput., 13:4 (1984), 682–689 | DOI | MR | Zbl
[14] Ch. Glasser, Ch. Reitwiessner, V. Selivanov, “The shrinking property for NP and coNP”, Theor. Comput. Sci., 412:8–10 (2011), 853–864 | DOI | MR | Zbl
[15] A. Blass, Yu. Gurevich, “Equivalence relations, invariants, and normal forms. II”, Logic and machines: decision problems and complexity, Proc. Symp. (Münster/Ger. 1983), Lect. Notes Comput. Sci., 171, 1984, 24–42 | DOI | MR | Zbl