Levi classes of quasivarieties of groups with commutator subgroup of order $p$
Algebra i logika, Tome 60 (2021) no. 5, pp. 510-524

Voir la notice de l'article provenant de la source Math-Net.Ru

The Levi class generated by the class $\mathcal{M}$ of groups is the class of all groups in which the normal closure of each element belongs to $\mathcal{M}$. We describe Levi classes generated by a quasivariety $\mathcal{K}^{p^{s}}$ and some of its subquasivarieties, where $\mathcal{K}^{p^{s}}$ is the quasivariety of groups with commutator subgroup of order $p$ in which elements of the exponent of the degree of $p$ less than $p^{s}$ are contained in the center of the group, $p$ is a prime, $p\neq 2$, $s\geq 2$, and $s>2$ for $p=3$.
Keywords: quasivariety, Levi class, nilpotent group.
@article{AL_2021_60_5_a3,
     author = {S. A. Shakhova},
     title = {Levi classes of quasivarieties of groups with commutator subgroup of order $p$},
     journal = {Algebra i logika},
     pages = {510--524},
     publisher = {mathdoc},
     volume = {60},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2021_60_5_a3/}
}
TY  - JOUR
AU  - S. A. Shakhova
TI  - Levi classes of quasivarieties of groups with commutator subgroup of order $p$
JO  - Algebra i logika
PY  - 2021
SP  - 510
EP  - 524
VL  - 60
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2021_60_5_a3/
LA  - ru
ID  - AL_2021_60_5_a3
ER  - 
%0 Journal Article
%A S. A. Shakhova
%T Levi classes of quasivarieties of groups with commutator subgroup of order $p$
%J Algebra i logika
%D 2021
%P 510-524
%V 60
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2021_60_5_a3/
%G ru
%F AL_2021_60_5_a3
S. A. Shakhova. Levi classes of quasivarieties of groups with commutator subgroup of order $p$. Algebra i logika, Tome 60 (2021) no. 5, pp. 510-524. http://geodesic.mathdoc.fr/item/AL_2021_60_5_a3/