Levi classes of quasivarieties of groups with commutator subgroup of order $p$
Algebra i logika, Tome 60 (2021) no. 5, pp. 510-524.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Levi class generated by the class $\mathcal{M}$ of groups is the class of all groups in which the normal closure of each element belongs to $\mathcal{M}$. We describe Levi classes generated by a quasivariety $\mathcal{K}^{p^{s}}$ and some of its subquasivarieties, where $\mathcal{K}^{p^{s}}$ is the quasivariety of groups with commutator subgroup of order $p$ in which elements of the exponent of the degree of $p$ less than $p^{s}$ are contained in the center of the group, $p$ is a prime, $p\neq 2$, $s\geq 2$, and $s>2$ for $p=3$.
Keywords: quasivariety, Levi class, nilpotent group.
@article{AL_2021_60_5_a3,
     author = {S. A. Shakhova},
     title = {Levi classes of quasivarieties of groups with commutator subgroup of order $p$},
     journal = {Algebra i logika},
     pages = {510--524},
     publisher = {mathdoc},
     volume = {60},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2021_60_5_a3/}
}
TY  - JOUR
AU  - S. A. Shakhova
TI  - Levi classes of quasivarieties of groups with commutator subgroup of order $p$
JO  - Algebra i logika
PY  - 2021
SP  - 510
EP  - 524
VL  - 60
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2021_60_5_a3/
LA  - ru
ID  - AL_2021_60_5_a3
ER  - 
%0 Journal Article
%A S. A. Shakhova
%T Levi classes of quasivarieties of groups with commutator subgroup of order $p$
%J Algebra i logika
%D 2021
%P 510-524
%V 60
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2021_60_5_a3/
%G ru
%F AL_2021_60_5_a3
S. A. Shakhova. Levi classes of quasivarieties of groups with commutator subgroup of order $p$. Algebra i logika, Tome 60 (2021) no. 5, pp. 510-524. http://geodesic.mathdoc.fr/item/AL_2021_60_5_a3/

[1] F. W. Levi, “Groups in which the commutator operation satisfies certain algebraic conditions”, J. Indian Math. Soc., New Ser., 6 (1942), 87–97 | Zbl

[2] R.F. Morse, “Levi-properties generated by varieties”, The mathematical legacy of Wilhelm Magnus. Groups, geometry and special functions, Conf. on the legacy of Wilhelm Magnus (May 1–3, 1992, Polytechnic Univ. Brooklyn, NY, USA), Contemp. Math., 169, eds. W. Abikoff et al., Am. Math. Soc., Providence, RI, 1994, 467–474 | DOI | Zbl

[3] L. C. Kappe, W. P. Kappe, “On three-Engel groups”, Bull. Aust. Math. Soc., 7:3 (1972), 391–405 | DOI | Zbl

[4] A. I. Budkin, “Kvazimnogoobraziya Levi”, Sib. matem. zh., 40:2 (1999), 266–270 | Zbl

[5] A. I. Budkin, “O klassakh Levi, porozhdennykh nilpotentnymi gruppami”, Algebra i logika, 39:6 (2000), 635–647 | Zbl

[6] A. I. Budkin, L. V. Taranina, “O kvazimnogoobraziyakh Levi, porozhdennykh nilpotentnymi gruppami”, Sib. matem. zh., 41:2 (2000), 270–277 | Zbl

[7] V. V. Lodeischikova, “O kvazimnogoobraziyakh Levi, porozhdennykh nilpotentnymi gruppami”, Izv. Alt. gos. un-ta, 2009, no. 1(61), 26–29

[8] V. V. Lodeischikova, “O klassakh Levi, porozhdennykh nilpotentnymi gruppami”, Sib. matem. zh., 51:6 (2010), 1359–1366

[9] V. V. Lodeischikova, “O kvazimnogoobraziyakh Levi eksponenty $p^s$”, Algebra i logika, 50:1 (2011), 26–41

[10] V. V. Lodeischikova, “O klasse Levi, porozhdennom kvazimnogoobraziem nilpotentnykh grupp”, Algebra i logika, 58:4 (2019), 486–499

[11] S. A. Shakhova, “Ob aksiomaticheskom range klassov Levi”, Algebra i logika, 57:5 (2018), 587–600 | Zbl

[12] S. A. Shakhova, “The axiomatic rank of the Levi class generated by the almost Abelian quasivariety of nilpotent groups”, Lobachevskii J. Math., 41:9 (2020), 1680–1683 | DOI | Zbl

[13] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1982

[14] A. I. Budkin, Kvazimnogoobraziya grupp, Izd-vo Alt. gos. un-ta, Barnaul, 2002

[15] V. A. Gorbunov, Algebraicheskaya teoriya kvazimnogoobrazii, Sibirskaya shkola algebry i logiki, Nauch. kniga, Novosibirsk, 1999

[16] Kh. Neiman, Mnogoobraziya grupp, Mir, M., 1969