Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2021_60_5_a0, author = {V. Delle Rose and L. San Mauro and A. Sorbi}, title = {The category of equivalence relations}, journal = {Algebra i logika}, pages = {451--470}, publisher = {mathdoc}, volume = {60}, number = {5}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2021_60_5_a0/} }
V. Delle Rose; L. San Mauro; A. Sorbi. The category of equivalence relations. Algebra i logika, Tome 60 (2021) no. 5, pp. 451-470. http://geodesic.mathdoc.fr/item/AL_2021_60_5_a0/
[1] Yu. L. Ershov, Teoriya numeratsii, Nauka, M., 1977
[2] S. Mac Lane, Categories for the working mathematician, Grad. Texts Math., 5, Springer-Verlag, New York-Heidelberg-Berlin, 1971 | Zbl
[3] H. Rogers, Theory of recursive functions and effective computability, McGraw-Hill, New York, 1967 ; Kh. Rodzhers, Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972 | Zbl
[4] Yu. L. Ershov, “Pozitivnye ekvivalentnosti”, Algebra i logika, 10:6 (1971), 620–650
[5] U. Andrews, S. Badaev, A. Sorbi, “A survey on universal computably enumerable equivalence relations”, Computability and complexity, Essays dedicated to Rodney G. Downey on the occasion of his 60th birthday, Lect. Notes Comput. Sci., 10010, eds. A. Day et al., Springer, Cham, 2017, 418–451 | DOI | Zbl
[6] V. Yu. Shavrukov, “Remarks on uniformly finitely precomplete positive equivalences”, Math. Log. Q, 42:1 (1996), 67–82 | DOI | Zbl
[7] U. Andrews, A. Sorbi, “Joins and meets in the structure of ceers”, Computability, 8:3/4 (2019), 193–241 | DOI | Zbl
[8] C. Bernardi, A. Sorbi, “Classifying positive equivalence relations”, J. Symb. Log., 48:3 (1983), 529–538 | DOI | Zbl