The category of equivalence relations
Algebra i logika, Tome 60 (2021) no. 5, pp. 451-470

Voir la notice de l'article provenant de la source Math-Net.Ru

We make some beginning observations about the category $\mathbb{E}\mathrm{q}$ of equivalence relations on the set of natural numbers, where a morphism between two equivalence relations $R$ and $S$ is a mapping from the set of $R$-equivalence classes to that of $S$-equivalence classes, which is induced by a computable function. We also consider some full subcategories of $\mathbb{E}\mathrm{q}$, such as the category $\mathbb{E}\mathrm{q}(\Sigma^0_1)$ of computably enumerable equivalence relations (called ceers), the category $\mathbb{E}\mathrm{q}(\Pi^0_1)$ of co-computably enumerable equivalence relations, and the category $\mathbb{E}\mathrm{q}(\mathrm{Dark}^*)$ whose objects are the so-called dark ceers plus the ceers with finitely many equivalence classes. Although in all these categories the monomorphisms coincide with the injective morphisms, we show that in $\mathbb{E}\mathrm{q}(\Sigma^0_1)$ the epimorphisms coincide with the onto morphisms, but in $\mathbb{E}\mathrm{q}(\Pi^0_1)$ there are epimorphisms that are not onto. Moreover, $\mathbb{E}\mathrm{q}$, $\mathbb{E}\mathrm{q}(\Sigma^0_1)$, and $\mathbb{E}\mathrm{q}(\mathrm{Dark}^*)$ are closed under finite products, binary coproducts, and coequalizers, but we give an example of two morphisms in $\mathbb{E}\mathrm{q}(\Pi^0_1)$ whose coequalizer in $\mathbb{E}\mathrm{q}$ is not an object of $\mathbb{E}\mathrm{q}(\Pi^0_1)$.
Keywords: category of equivalence relations on set of natural numbers, category of ceers, category of coceers, category of dark ceers and finite ceers.
@article{AL_2021_60_5_a0,
     author = {V. Delle Rose and L. San Mauro and A. Sorbi},
     title = {The category of equivalence relations},
     journal = {Algebra i logika},
     pages = {451--470},
     publisher = {mathdoc},
     volume = {60},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2021_60_5_a0/}
}
TY  - JOUR
AU  - V. Delle Rose
AU  - L. San Mauro
AU  - A. Sorbi
TI  - The category of equivalence relations
JO  - Algebra i logika
PY  - 2021
SP  - 451
EP  - 470
VL  - 60
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2021_60_5_a0/
LA  - ru
ID  - AL_2021_60_5_a0
ER  - 
%0 Journal Article
%A V. Delle Rose
%A L. San Mauro
%A A. Sorbi
%T The category of equivalence relations
%J Algebra i logika
%D 2021
%P 451-470
%V 60
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2021_60_5_a0/
%G ru
%F AL_2021_60_5_a0
V. Delle Rose; L. San Mauro; A. Sorbi. The category of equivalence relations. Algebra i logika, Tome 60 (2021) no. 5, pp. 451-470. http://geodesic.mathdoc.fr/item/AL_2021_60_5_a0/