Mots-clés : $OC_n$-group
@article{AL_2021_60_3_a5,
author = {N. Yang and A. S. Mamontov},
title = {$(2,3)$-generated groups with small element orders},
journal = {Algebra i logika},
pages = {327--334},
year = {2021},
volume = {60},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2021_60_3_a5/}
}
N. Yang; A. S. Mamontov. $(2,3)$-generated groups with small element orders. Algebra i logika, Tome 60 (2021) no. 3, pp. 327-334. http://geodesic.mathdoc.fr/item/AL_2021_60_3_a5/
[1] R. Brandl, W. Shi, “Finite groups whose element orders are consecutive integers”, J. Algebra, 143:2 (1991), 388–400 | DOI | Zbl
[2] Unsolved problems in group theory. The Kourovka notebook, 19, Sobolev Institute of Mathematics, Novosibirsk, 2018 http://www.math.nsc.ru/ãlglog/19tkt.pdf
[3] I. N. Sanov, “Reshenie problemy Bernsaida dlya pokazatelya 4”, Uch. zapiski LGU. Ser. matem., 10 (1940), 166–170
[4] V. D. Mazurov, “O gruppakh perioda 60 s zadannymi poryadkami elementov”, Algebra i logika, 39:3 (2000), 329–346 | Zbl
[5] D. V. Lytkina, V. D. Mazurov, A. S. Mamontov, E. Yabara, “Gruppy, poryadki elementov kotorykh ne prevoskhodyat 6”, Algebra i logika, 53:5 (2014), 570–586 | Zbl
[6] A. S. Mamontov, “O periodicheskikh gruppakh, izospektralnykh $A_7$”, Sib. matem. zh., 61:1 (2020), 137–147 | Zbl
[7] A. S. Mamontov, E. Yabara, “O periodicheskikh gruppakh, izospektralnykh $A_7$. II”, Sib. matem. zh., 61:6 (2020), 1366–1376 | Zbl
[8] A. S. Mamontov, E. Yabara, “Raspoznavanie $A_7$ po mnozhestvu poryadkov elementov”, Sib. matem. zh., 62:1 (2021), 117–130 | Zbl
[9] GAP — Groups, Algorithms, Programming — A System for Computational Discrete Algebra, vers. 4.11.1, , The GAP Group, 2021 https://www.gap-system.org
[10] H. S. M. Coxeter, W. O. J. Moser, Generators and relations for discrete groups, Ergeb. Math. Grenzgeb., 14, 4th ed., Springer-Verlag, Berlin-Heidelberg-New York, 1980 | Zbl