Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2021_60_3_a1, author = {A. V. Vasilev and I. N. Ponomarenko}, title = {The closures of wreath products in product action}, journal = {Algebra i logika}, pages = {286--297}, publisher = {mathdoc}, volume = {60}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2021_60_3_a1/} }
A. V. Vasilev; I. N. Ponomarenko. The closures of wreath products in product action. Algebra i logika, Tome 60 (2021) no. 3, pp. 286-297. http://geodesic.mathdoc.fr/item/AL_2021_60_3_a1/
[1] H. Wielandt, “Permutation groups through invariant relation and invariant functions”: H. Wielandt, Mathematische Werke. Mathematical works, Lect. Notes Dept. Math. Ohio St. Univ. (Columbus, 1969), v. 1, Group theory, eds. B. Huppert, H. Schneider, Walter de Gruyter, Berlin, 1994, 237–266
[2] C. E. Praeger, J. Saxl, “Closures of finite primitive permutation groups”, Bull. Lond. Math. Soc., 24:3 (1992), 251–258 | DOI | Zbl
[3] J. Xu, M. Giudici, C. H. Li, C. E. Praeger, “Invariant relations and Aschbacher classes of finite linear groups”, Electron. J. Comb., 18:1 (2011), P225, 33 pp. | DOI | Zbl
[4] E. A. O'Brien, I. Ponomarenko, A. V. Vasil'ev, E. Vdovin, “The 3-closure of a solvable permutation group is solvable”, J. Algebra, 2021 | DOI
[5] S. Evdokimov, I. Ponomarenko, “Two-closure of odd permutation group in polynomial time”, Discrete Math., 235:1–3 (2001), 221–232 | DOI | Zbl
[6] I. Ponomarenko, A. Vasil'ev, “Two-closure of supersolvable permutation group in polynomial time”, Comput. Complexity, 29:1 (2020), 5, 33 pp. | DOI | Zbl
[7] M. W. Liebeck, C. E. Praeger, J. Saxl, “On the $2$-closures of finite permutation groups”, J. Lond. Math. Soc., II. Ser., 37:2 (1988), 241–252 | DOI | Zbl
[8] D. V. Churikov, “Struktura $k$-zamykanii konechnykh nilpotentnykh grupp podstanovok”, Algebra i logika, 60:2 (2021), 231–239
[9] L. A. Kaluzhnin, M. Kh. Klin, “O nekotorykh chislovykh invariantakh grupp podstanovok”, Latv. matem. ezhegodnik, 18:1 (1976), 81–99 | Zbl
[10] Á. Seress, “Primitive groups with no regular orbits on the set of subsets”, Bull. Lond. Math. Soc., 29:6 (1997), 697–704 | DOI | Zbl
[11] J. D. Dixon, B. Mortimer, Permutation groups, Grad. Texts Math., 163, Springer-Verlag, New York, NY, 1996 | DOI | Zbl
[12] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-regular graphs, Ergeb. Math. Grenzgeb., 3, 18, Springer-Verlag, Berlin etc., 1989 | Zbl
[13] GAP — Groups, Algorithms, Programming — A System for Computational Discrete Algebra, vers. 4.11.1 (, , The GAP Group, 2021 https://www.gap-system.org