The closures of wreath products in product action
Algebra i logika, Tome 60 (2021) no. 3, pp. 286-297.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $m$ be a positive integer and let $\Omega$ be a finite set. The $m$-closure of $G\le{\rm Sym} (\Omega)$ is the largest permutation group $G^{(m)}$ on $\Omega$ having the same orbits as $G$ in its induced action on the Cartesian product $\Omega^m$. An exact formula for the $m$-closure of the wreath product in product action is given. As a corollary, a sufficient condition is obtained for this $m$-closure to be included in the wreath product of the $m$-closures of the factors.
Keywords: right-symmetric ring, left-symmetric algebra, pre-Lie algebra, prime ring, $(1,1)$-superalgebra.
Mots-clés : Pierce decomposition
@article{AL_2021_60_3_a1,
     author = {A. V. Vasilev and I. N. Ponomarenko},
     title = {The closures of wreath products in product action},
     journal = {Algebra i logika},
     pages = {286--297},
     publisher = {mathdoc},
     volume = {60},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2021_60_3_a1/}
}
TY  - JOUR
AU  - A. V. Vasilev
AU  - I. N. Ponomarenko
TI  - The closures of wreath products in product action
JO  - Algebra i logika
PY  - 2021
SP  - 286
EP  - 297
VL  - 60
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2021_60_3_a1/
LA  - ru
ID  - AL_2021_60_3_a1
ER  - 
%0 Journal Article
%A A. V. Vasilev
%A I. N. Ponomarenko
%T The closures of wreath products in product action
%J Algebra i logika
%D 2021
%P 286-297
%V 60
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2021_60_3_a1/
%G ru
%F AL_2021_60_3_a1
A. V. Vasilev; I. N. Ponomarenko. The closures of wreath products in product action. Algebra i logika, Tome 60 (2021) no. 3, pp. 286-297. http://geodesic.mathdoc.fr/item/AL_2021_60_3_a1/

[1] H. Wielandt, “Permutation groups through invariant relation and invariant functions”: H. Wielandt, Mathematische Werke. Mathematical works, Lect. Notes Dept. Math. Ohio St. Univ. (Columbus, 1969), v. 1, Group theory, eds. B. Huppert, H. Schneider, Walter de Gruyter, Berlin, 1994, 237–266

[2] C. E. Praeger, J. Saxl, “Closures of finite primitive permutation groups”, Bull. Lond. Math. Soc., 24:3 (1992), 251–258 | DOI | Zbl

[3] J. Xu, M. Giudici, C. H. Li, C. E. Praeger, “Invariant relations and Aschbacher classes of finite linear groups”, Electron. J. Comb., 18:1 (2011), P225, 33 pp. | DOI | Zbl

[4] E. A. O'Brien, I. Ponomarenko, A. V. Vasil'ev, E. Vdovin, “The 3-closure of a solvable permutation group is solvable”, J. Algebra, 2021 | DOI

[5] S. Evdokimov, I. Ponomarenko, “Two-closure of odd permutation group in polynomial time”, Discrete Math., 235:1–3 (2001), 221–232 | DOI | Zbl

[6] I. Ponomarenko, A. Vasil'ev, “Two-closure of supersolvable permutation group in polynomial time”, Comput. Complexity, 29:1 (2020), 5, 33 pp. | DOI | Zbl

[7] M. W. Liebeck, C. E. Praeger, J. Saxl, “On the $2$-closures of finite permutation groups”, J. Lond. Math. Soc., II. Ser., 37:2 (1988), 241–252 | DOI | Zbl

[8] D. V. Churikov, “Struktura $k$-zamykanii konechnykh nilpotentnykh grupp podstanovok”, Algebra i logika, 60:2 (2021), 231–239

[9] L. A. Kaluzhnin, M. Kh. Klin, “O nekotorykh chislovykh invariantakh grupp podstanovok”, Latv. matem. ezhegodnik, 18:1 (1976), 81–99 | Zbl

[10] Á. Seress, “Primitive groups with no regular orbits on the set of subsets”, Bull. Lond. Math. Soc., 29:6 (1997), 697–704 | DOI | Zbl

[11] J. D. Dixon, B. Mortimer, Permutation groups, Grad. Texts Math., 163, Springer-Verlag, New York, NY, 1996 | DOI | Zbl

[12] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-regular graphs, Ergeb. Math. Grenzgeb., 3, 18, Springer-Verlag, Berlin etc., 1989 | Zbl

[13] GAP — Groups, Algorithms, Programming — A System for Computational Discrete Algebra, vers. 4.11.1 (, , The GAP Group, 2021 https://www.gap-system.org