Structure of $k$-closures of finite nilpotent permutation groups
Algebra i logika, Tome 60 (2021) no. 2, pp. 231-239.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a permutation group of a set $\Omega$ and $k$ be a positive integer. The $k$-closure of $G$ is the greatest (w.r.t. inclusion) subgroup $G^{(k)}$ in $\mathrm{Sym} (\Omega)$ which has the same orbits as has $G$ under the componentwise action on the set $\Omega^k$. It is proved that the $k$-closure of a finite nilpotent group coincides with the direct product of $k$-closures of all of its Sylow subgroups.
Keywords: $k$-closure, finite nilpotent group, Sylow subgroup.
@article{AL_2021_60_2_a7,
     author = {D. V. Churikov},
     title = {Structure of $k$-closures of finite nilpotent permutation groups},
     journal = {Algebra i logika},
     pages = {231--239},
     publisher = {mathdoc},
     volume = {60},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2021_60_2_a7/}
}
TY  - JOUR
AU  - D. V. Churikov
TI  - Structure of $k$-closures of finite nilpotent permutation groups
JO  - Algebra i logika
PY  - 2021
SP  - 231
EP  - 239
VL  - 60
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2021_60_2_a7/
LA  - ru
ID  - AL_2021_60_2_a7
ER  - 
%0 Journal Article
%A D. V. Churikov
%T Structure of $k$-closures of finite nilpotent permutation groups
%J Algebra i logika
%D 2021
%P 231-239
%V 60
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2021_60_2_a7/
%G ru
%F AL_2021_60_2_a7
D. V. Churikov. Structure of $k$-closures of finite nilpotent permutation groups. Algebra i logika, Tome 60 (2021) no. 2, pp. 231-239. http://geodesic.mathdoc.fr/item/AL_2021_60_2_a7/

[1] H. Wielandt, “Permutation groups through invariant relation and invariant functions”, Lect. Notes Dept. Math. Ohio St. Univ., Columbus, 1969: H. Wielandt, Mathematische Werke. Mathematical works, v. 1, Group theory, eds. B. Huppert, H. Schneider, Walter de Gruyter, Berlin, 1994, 237–266 | MR

[2] D. Churikov, I. Ponomarenko, “On $2$-closed abelian permutation groups”, 2020 (to appear); arXiv: 2011.12011 [math.GR]

[3] D. Churikov, Ch. E. Praeger, “Finite totally $k$-closed groups”, Tr. IMM UrO RAN, 27, no. 1, 2021, 240–245 | MR

[4] H. Wielandt, Finite permutation groups, Academic Press, New York–London, 1964 | MR | Zbl

[5] E. A. O'Brien, I. Ponomarenko, A. V. Vasil'ev, E. Vdovin, The $3$-closure of a solvable permutation group is solvable, arXiv: 2012.14166 [math.GR] | MR

[6] S. Evdokimov, I. Ponomarenko, “Two-closure of odd permutation group in polynomial time”, Discrete Math., 235:1–3 (2001), 221–232 | DOI | MR | Zbl

[7] P. J. Cameron, M. Giudici, G. A. Jones, W. M. Kantor, M. H. Klin, D. Marušič, L. A. Nowitz, “Transitive permutation groups without semiregular subgroups”, J. Lond. Math. Soc., II. Ser., 66:2 (2002), 325–333 | DOI | MR | Zbl