Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2021_60_2_a7, author = {D. V. Churikov}, title = {Structure of $k$-closures of finite nilpotent permutation groups}, journal = {Algebra i logika}, pages = {231--239}, publisher = {mathdoc}, volume = {60}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2021_60_2_a7/} }
D. V. Churikov. Structure of $k$-closures of finite nilpotent permutation groups. Algebra i logika, Tome 60 (2021) no. 2, pp. 231-239. http://geodesic.mathdoc.fr/item/AL_2021_60_2_a7/
[1] H. Wielandt, “Permutation groups through invariant relation and invariant functions”, Lect. Notes Dept. Math. Ohio St. Univ., Columbus, 1969: H. Wielandt, Mathematische Werke. Mathematical works, v. 1, Group theory, eds. B. Huppert, H. Schneider, Walter de Gruyter, Berlin, 1994, 237–266 | MR
[2] D. Churikov, I. Ponomarenko, “On $2$-closed abelian permutation groups”, 2020 (to appear); arXiv: 2011.12011 [math.GR]
[3] D. Churikov, Ch. E. Praeger, “Finite totally $k$-closed groups”, Tr. IMM UrO RAN, 27, no. 1, 2021, 240–245 | MR
[4] H. Wielandt, Finite permutation groups, Academic Press, New York–London, 1964 | MR | Zbl
[5] E. A. O'Brien, I. Ponomarenko, A. V. Vasil'ev, E. Vdovin, The $3$-closure of a solvable permutation group is solvable, arXiv: 2012.14166 [math.GR] | MR
[6] S. Evdokimov, I. Ponomarenko, “Two-closure of odd permutation group in polynomial time”, Discrete Math., 235:1–3 (2001), 221–232 | DOI | MR | Zbl
[7] P. J. Cameron, M. Giudici, G. A. Jones, W. M. Kantor, M. H. Klin, D. Marušič, L. A. Nowitz, “Transitive permutation groups without semiregular subgroups”, J. Lond. Math. Soc., II. Ser., 66:2 (2002), 325–333 | DOI | MR | Zbl