Universal functions and $\Sigma_{\omega}$-bounded structures
Algebra i logika, Tome 60 (2021) no. 2, pp. 210-230.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notion of a $\Sigma_{\omega}$-bounded structure and specify a necessary and sufficient condition for a universal $\Sigma$-function to exist in a hereditarily finite superstructure over such a structure, for the class of all unary partial $\Sigma$-functions assuming values in the set $\omega$ of natural ordinals. Trees and equivalences are exemplified in hereditarily finite superstructures over which there exists no universal $\Sigma$-function for the class of all unary partial $\Sigma$-functions, but there exists a universal $\Sigma$-function for the class of all unary partial $\Sigma$-functions assuming values in the set $\omega$ of natural ordinals. We construct a tree $T$ of height $5$ such that the hereditarily finite superstructure ${\mathbb {HF}}(T)$ over $T$ has no universal $\Sigma$-function for the class of all unary partial $\Sigma$-functions assuming values $0, 1$ only.
Mots-clés : admissible set
Keywords: $\Sigma$-function, universal $\Sigma$-function hereditarily finite superstructure, tree.
@article{AL_2021_60_2_a6,
     author = {A. N. Khisamiev},
     title = {Universal functions and $\Sigma_{\omega}$-bounded structures},
     journal = {Algebra i logika},
     pages = {210--230},
     publisher = {mathdoc},
     volume = {60},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2021_60_2_a6/}
}
TY  - JOUR
AU  - A. N. Khisamiev
TI  - Universal functions and $\Sigma_{\omega}$-bounded structures
JO  - Algebra i logika
PY  - 2021
SP  - 210
EP  - 230
VL  - 60
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2021_60_2_a6/
LA  - ru
ID  - AL_2021_60_2_a6
ER  - 
%0 Journal Article
%A A. N. Khisamiev
%T Universal functions and $\Sigma_{\omega}$-bounded structures
%J Algebra i logika
%D 2021
%P 210-230
%V 60
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2021_60_2_a6/
%G ru
%F AL_2021_60_2_a6
A. N. Khisamiev. Universal functions and $\Sigma_{\omega}$-bounded structures. Algebra i logika, Tome 60 (2021) no. 2, pp. 210-230. http://geodesic.mathdoc.fr/item/AL_2021_60_2_a6/

[1] Yu. L. Ershov, Opredelimost i vychislimost, Sibirskaya shkola algebry i logiki, Nauch. kn., Novosibirsk; 2-е изд., испр. и доп., Экономика, М., 2000

[2] H. Rogers, Theory of recursive functions and effective computability, McGraw-Hill, New York, 1967 ; Kh. Rodzhers, Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972 | MR | Zbl

[3] V. A. Rudnev, “Ob universalnoi rekursivnoi funktsii na dopustimykh mnozhestvakh”, Algebra i logika, 25:4 (1986), 425–435 | MR | Zbl

[4] Yu. L. Ershov, V. G. Puzarenko, A. I. Stukachev, “${\mathbb {HF}}$-Computability”, Computability in context. Computation and logic in the real world, eds. S. B. Cooper et al., Imperial College Press, London, 2011, 169–242 | DOI | MR | Zbl

[5] A. S. Morozov, V. G. Puzarenko, “O $\Sigma$-podmnozhestvakh naturalnykh chisel”, Algebra i logika, 43:3 (2004), 291–320 | MR | Zbl

[6] I. Sh. Kalimulin, V. G. Puzarenko, “O printsipakh vychislimosti na dopustimykh mnozhestvakh”, Matem. tr., 7:2 (2004), 35–71

[7] V. G. Puzarenko, “K vychislimosti na spetsialnykh modelyakh”, Sib. matem. zh., 46:1 (2005), 185–208 | MR | Zbl

[8] A. N. Khisamiev, “Ob universalnoi $\Sigma$-funktsii nad derevom”, Sib. matem. zh., 53:3 (2012), 687–690 | MR | Zbl

[9] A. N. Khisamiev, “Universalnye funktsii i $K\Sigma$-struktury”, Sib. matem. zh., 61:3 (2020), 703–716 | MR | Zbl

[10] A. N. Khisamiev, “$\Sigma$-ogranichennye algebraicheskie sistemy i universalnye funktsii. I”, Sib. matem. zh., 51:1 (2010), 217–235 | MR | Zbl