Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2021_60_2_a6, author = {A. N. Khisamiev}, title = {Universal functions and $\Sigma_{\omega}$-bounded structures}, journal = {Algebra i logika}, pages = {210--230}, publisher = {mathdoc}, volume = {60}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2021_60_2_a6/} }
A. N. Khisamiev. Universal functions and $\Sigma_{\omega}$-bounded structures. Algebra i logika, Tome 60 (2021) no. 2, pp. 210-230. http://geodesic.mathdoc.fr/item/AL_2021_60_2_a6/
[1] Yu. L. Ershov, Opredelimost i vychislimost, Sibirskaya shkola algebry i logiki, Nauch. kn., Novosibirsk; 2-е изд., испр. и доп., Экономика, М., 2000
[2] H. Rogers, Theory of recursive functions and effective computability, McGraw-Hill, New York, 1967 ; Kh. Rodzhers, Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972 | MR | Zbl
[3] V. A. Rudnev, “Ob universalnoi rekursivnoi funktsii na dopustimykh mnozhestvakh”, Algebra i logika, 25:4 (1986), 425–435 | MR | Zbl
[4] Yu. L. Ershov, V. G. Puzarenko, A. I. Stukachev, “${\mathbb {HF}}$-Computability”, Computability in context. Computation and logic in the real world, eds. S. B. Cooper et al., Imperial College Press, London, 2011, 169–242 | DOI | MR | Zbl
[5] A. S. Morozov, V. G. Puzarenko, “O $\Sigma$-podmnozhestvakh naturalnykh chisel”, Algebra i logika, 43:3 (2004), 291–320 | MR | Zbl
[6] I. Sh. Kalimulin, V. G. Puzarenko, “O printsipakh vychislimosti na dopustimykh mnozhestvakh”, Matem. tr., 7:2 (2004), 35–71
[7] V. G. Puzarenko, “K vychislimosti na spetsialnykh modelyakh”, Sib. matem. zh., 46:1 (2005), 185–208 | MR | Zbl
[8] A. N. Khisamiev, “Ob universalnoi $\Sigma$-funktsii nad derevom”, Sib. matem. zh., 53:3 (2012), 687–690 | MR | Zbl
[9] A. N. Khisamiev, “Universalnye funktsii i $K\Sigma$-struktury”, Sib. matem. zh., 61:3 (2020), 703–716 | MR | Zbl
[10] A. N. Khisamiev, “$\Sigma$-ogranichennye algebraicheskie sistemy i universalnye funktsii. I”, Sib. matem. zh., 51:1 (2010), 217–235 | MR | Zbl