Some properties of the upper semilattice of computable families of computably enumerable sets
Algebra i logika, Tome 60 (2021) no. 2, pp. 195-209.

Voir la notice de l'article provenant de la source Math-Net.Ru

We look at specific features of the algebraic structure of an upper semilattice of computable families of computably enumerable sets in $\Omega$. It is proved that ideals of minuend and finite families of $\Omega$ coincide. We deal with the question whether there exist atoms and coatoms in the factor semilattice of $\Omega$ with respect to an ideal of finite families. Also we point out a sufficient condition for computable families to be complemented.
Keywords: computably enumerable set, computable family, computable numbering, semilattice of computable families.
@article{AL_2021_60_2_a5,
     author = {M. Kh. Faizrakhmanov},
     title = {Some properties of the upper semilattice of computable families of computably enumerable sets},
     journal = {Algebra i logika},
     pages = {195--209},
     publisher = {mathdoc},
     volume = {60},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2021_60_2_a5/}
}
TY  - JOUR
AU  - M. Kh. Faizrakhmanov
TI  - Some properties of the upper semilattice of computable families of computably enumerable sets
JO  - Algebra i logika
PY  - 2021
SP  - 195
EP  - 209
VL  - 60
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2021_60_2_a5/
LA  - ru
ID  - AL_2021_60_2_a5
ER  - 
%0 Journal Article
%A M. Kh. Faizrakhmanov
%T Some properties of the upper semilattice of computable families of computably enumerable sets
%J Algebra i logika
%D 2021
%P 195-209
%V 60
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2021_60_2_a5/
%G ru
%F AL_2021_60_2_a5
M. Kh. Faizrakhmanov. Some properties of the upper semilattice of computable families of computably enumerable sets. Algebra i logika, Tome 60 (2021) no. 2, pp. 195-209. http://geodesic.mathdoc.fr/item/AL_2021_60_2_a5/

[1] Yu. L. Ershov, Teoriya numeratsii, Nauka, M., 1977 | MR

[2] A. N. Degtev, “O polureshetke vychislimykh semeistv rekursivno perechislimykh mnozhestv”, Matem. zametki, 50:4 (1991), 61–66 | Zbl

[3] R. I. Soare, Recursively enumerable sets and degrees. A study of computable functions and computably generated sets, Perspect. Math. Log., Omega Series, Springer-Verlag, Berlin etc., 1987 ; R. I. Soar, Vychislimo perechislimye mnozhestva i stepeni. Izuchenie vychislimykh funktsii i vychislimo perechislimykh mnozhestv, Kazanskoe matem. ob-vo, Kazan, 2000 | DOI | MR

[4] S. A. Badaev, “O pozitivnykh numeratsiyakh”, Sib. matem. zh., 18:3 (1977), 483–496 | MR | Zbl

[5] S. A. Badaev, S. S. Goncharov, “Obobschenno vychislimye universalnye numeratsii”, Algebra i logika, 53:5 (2014), 555–569 | MR

[6] R. M. Friedberg, “Three theorems on recursive enumeration. I: Decomposition. II: Maximal set. III: Enumeration without duplication”, J. Symb. Log., 23:3 (1958), 309–316 | DOI | MR

[7] C. E. M. Yates, “On the degrees of index sets. II”, Trans. Am. Math. Soc., 135 (1969), 249–266 | DOI | MR | Zbl