Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2021_60_2_a5, author = {M. Kh. Faizrakhmanov}, title = {Some properties of the upper semilattice of computable families of computably enumerable sets}, journal = {Algebra i logika}, pages = {195--209}, publisher = {mathdoc}, volume = {60}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2021_60_2_a5/} }
TY - JOUR AU - M. Kh. Faizrakhmanov TI - Some properties of the upper semilattice of computable families of computably enumerable sets JO - Algebra i logika PY - 2021 SP - 195 EP - 209 VL - 60 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AL_2021_60_2_a5/ LA - ru ID - AL_2021_60_2_a5 ER -
M. Kh. Faizrakhmanov. Some properties of the upper semilattice of computable families of computably enumerable sets. Algebra i logika, Tome 60 (2021) no. 2, pp. 195-209. http://geodesic.mathdoc.fr/item/AL_2021_60_2_a5/
[1] Yu. L. Ershov, Teoriya numeratsii, Nauka, M., 1977 | MR
[2] A. N. Degtev, “O polureshetke vychislimykh semeistv rekursivno perechislimykh mnozhestv”, Matem. zametki, 50:4 (1991), 61–66 | Zbl
[3] R. I. Soare, Recursively enumerable sets and degrees. A study of computable functions and computably generated sets, Perspect. Math. Log., Omega Series, Springer-Verlag, Berlin etc., 1987 ; R. I. Soar, Vychislimo perechislimye mnozhestva i stepeni. Izuchenie vychislimykh funktsii i vychislimo perechislimykh mnozhestv, Kazanskoe matem. ob-vo, Kazan, 2000 | DOI | MR
[4] S. A. Badaev, “O pozitivnykh numeratsiyakh”, Sib. matem. zh., 18:3 (1977), 483–496 | MR | Zbl
[5] S. A. Badaev, S. S. Goncharov, “Obobschenno vychislimye universalnye numeratsii”, Algebra i logika, 53:5 (2014), 555–569 | MR
[6] R. M. Friedberg, “Three theorems on recursive enumeration. I: Decomposition. II: Maximal set. III: Enumeration without duplication”, J. Symb. Log., 23:3 (1958), 309–316 | DOI | MR
[7] C. E. M. Yates, “On the degrees of index sets. II”, Trans. Am. Math. Soc., 135 (1969), 249–266 | DOI | MR | Zbl