Simple right-symmetric $(1,1)$-superalgebras
Algebra i logika, Tome 60 (2021) no. 2, pp. 166-175
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that $2$-torsion-free prime right-symmetric superrings having a nontrivial idempotent and satisfying a superidentity $(x,y,z)+(-1)^{z(x+y)}\cdot (z,x,y)+(-1)^{x(y+z)}(y,z,x)=0$ are associative. As a consequence, every simple finite-dimensional $(1,1)$-superalgebra with semisimple even part over an algebraically closed field of characteristic $0$ is associative.
Keywords:
right-symmetric ring, left-symmetric algebra, pre-Lie algebra, prime ring, Peirce decomposition, $(1,1)$-superalgebra.
@article{AL_2021_60_2_a3,
author = {A. P. Pozhidaev and I. P. Shestakov},
title = {Simple right-symmetric $(1,1)$-superalgebras},
journal = {Algebra i logika},
pages = {166--175},
publisher = {mathdoc},
volume = {60},
number = {2},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2021_60_2_a3/}
}
A. P. Pozhidaev; I. P. Shestakov. Simple right-symmetric $(1,1)$-superalgebras. Algebra i logika, Tome 60 (2021) no. 2, pp. 166-175. http://geodesic.mathdoc.fr/item/AL_2021_60_2_a3/