Lengths of roots of polynomials in a Hahn field
Algebra i logika, Tome 60 (2021) no. 2, pp. 145-165.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $K$ be an algebraically closed field of characteristic $0$, and let $G$ be a divisible ordered Abelian group. Maclane [Bull. Am. Math. Soc., 45 (1939), 888—890] showed that the Hahn field $K((G))$ is algebraically closed. Our goal is to bound the lengths of roots of a polynomial $p(x)$ over $K((G))$ in terms of the lengths of its coefficients. The main result of the paper says that if $\gamma$ is a limit ordinal greater than the lengths of all of the coefficients, then the roots all have length less than $\omega^{\omega^\gamma}$.
Keywords: Hahn field, generalized power series, truncation-closed field, length.
@article{AL_2021_60_2_a2,
     author = {J. F. Knight and K. Lange},
     title = {Lengths of roots of polynomials in a {Hahn} field},
     journal = {Algebra i logika},
     pages = {145--165},
     publisher = {mathdoc},
     volume = {60},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2021_60_2_a2/}
}
TY  - JOUR
AU  - J. F. Knight
AU  - K. Lange
TI  - Lengths of roots of polynomials in a Hahn field
JO  - Algebra i logika
PY  - 2021
SP  - 145
EP  - 165
VL  - 60
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2021_60_2_a2/
LA  - ru
ID  - AL_2021_60_2_a2
ER  - 
%0 Journal Article
%A J. F. Knight
%A K. Lange
%T Lengths of roots of polynomials in a Hahn field
%J Algebra i logika
%D 2021
%P 145-165
%V 60
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2021_60_2_a2/
%G ru
%F AL_2021_60_2_a2
J. F. Knight; K. Lange. Lengths of roots of polynomials in a Hahn field. Algebra i logika, Tome 60 (2021) no. 2, pp. 145-165. http://geodesic.mathdoc.fr/item/AL_2021_60_2_a2/

[1] H. Hahn, “Über die nichtarchimedischen Grössensysteme”, Wien. Ber., 116 (1907), 601–655 ; reprinted in: H. Hahn, Collected works, v. 1, Springer-Verlag, Wien, 1995 | Zbl | MR | Zbl

[2] A. I. Maltsev, “O vklyuchenii gruppovykh algebr v algebry s deleniem”, Dokl. AN SSSR, 60:9 (1948), 1499–1501 | MR | Zbl

[3] B. H. Neumann, “On ordered division rings”, Trans. Am. Math. Soc., 66 (1949), 202–252 | DOI | MR | Zbl

[4] S. Maclane, “The universality of formal power series fields”, Bull. Am. Math. Soc., 45 (1939), 888–890 | DOI | MR

[5] J. F. Knight, K. Lange, R. Solomon, “Roots of polynomials in fields of generalized power series”, Proc. for Aspects of Computation, World Scientific (to appear)

[6] I. Newton, “Letter to Oldenburg dated Oct. 24, 1676”, The Correspondence of Isaac Newton, v. II, 1676–1687, ed. H. W. Turnbull, Cambridge Univ. Press, Cambridge, 1960, 126—127 | MR

[7] I. Newton, The method of fluxions and infinite series; with its application to the geometry of curve-lines, translated by John Colson, H. Woodfall, 1736 (sold by J. Nourse) https://www.loc.gov/item/42048007/

[8] V. A. Puiseux, “Recherches sur les fonctions algébriques”, J. Math. Pures Appl., 15 (1850), 365–480

[9] V. A. Puiseux, “Nouvelles recherches sur les fonctions algébriques”, J. Math. Pures Appl., 16 (1851), 228–240

[10] R. J. Walker, Algebraic curves, Princeton Math. Ser., 13, Princet. Univ. Press, Princeton, N. J.; Oxford Univ. Press, London, 1950 | MR | Zbl

[11] S. Basu, R. Pollack, M.-F. Roy, Algorithms in real algebraic geometry, Algorithms Comput. Math., 10, 2nd ed., Springer-Verlag, Berlin, 2006 | DOI | MR | Zbl

[12] A. Fornasiero, “Embedding Henselian fields into power series”, J. Algebra, 304:1 (2006), 112–156 | DOI | MR | Zbl

[13] F.-V. Kuhlmann, S. Kuhlmann, J. W. Lee, “Valuation bases for generalized algebraic series fields”, J. Algebra, 322:5 (2009), 1430–1453 | DOI | MR | Zbl

[14] J. F. Knight, K. Lange, “Lengths of developments in $K((G))$”, Sel. Math., New Ser., 25:1 (2019), 14, 36 pp. | DOI | MR | Zbl

[15] M. H. Mourgues, J. P. Ressayre, “Every real closed field has an integer part”, J. Symb. Log., 58:2 (1993), 641–647 | DOI | MR | Zbl

[16] J. F. Knight, K. Lange, “Complexity of structures associated with real closed fields”, Proc. Lond. Math. Soc. (3), 107:1 (2013), 177–197 | DOI | MR | Zbl