Independent axiomatizability of quasivarieties of torsion-free nilpotent groups
Algebra i logika, Tome 60 (2021) no. 2, pp. 123-136

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $N$ be a quasivariety of torsion-free nilpotent groups of class at most two. It is proved that the set of subquasivarieties in $N$, which have no independent basis of quasi-identities and are generated by a finitely generated group, is infinite. It is stated that there exists an infinite set of quasivarieties $M$ in $N$ which are generated by a finitely generated group and are such that for every quasivariety $K$ ($M\varsubsetneq K\subseteq N$), an interval $[M,K]$ has the power of the continuum in the quasivariety lattice.
Keywords: nilpotent group, quasivariety, variety, independent basis of quasi-identities.
@article{AL_2021_60_2_a0,
     author = {A. I. Budkin},
     title = {Independent axiomatizability of quasivarieties of torsion-free nilpotent groups},
     journal = {Algebra i logika},
     pages = {123--136},
     publisher = {mathdoc},
     volume = {60},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2021_60_2_a0/}
}
TY  - JOUR
AU  - A. I. Budkin
TI  - Independent axiomatizability of quasivarieties of torsion-free nilpotent groups
JO  - Algebra i logika
PY  - 2021
SP  - 123
EP  - 136
VL  - 60
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2021_60_2_a0/
LA  - ru
ID  - AL_2021_60_2_a0
ER  - 
%0 Journal Article
%A A. I. Budkin
%T Independent axiomatizability of quasivarieties of torsion-free nilpotent groups
%J Algebra i logika
%D 2021
%P 123-136
%V 60
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2021_60_2_a0/
%G ru
%F AL_2021_60_2_a0
A. I. Budkin. Independent axiomatizability of quasivarieties of torsion-free nilpotent groups. Algebra i logika, Tome 60 (2021) no. 2, pp. 123-136. http://geodesic.mathdoc.fr/item/AL_2021_60_2_a0/