Independent axiomatizability of quasivarieties of torsion-free nilpotent groups
Algebra i logika, Tome 60 (2021) no. 2, pp. 123-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $N$ be a quasivariety of torsion-free nilpotent groups of class at most two. It is proved that the set of subquasivarieties in $N$, which have no independent basis of quasi-identities and are generated by a finitely generated group, is infinite. It is stated that there exists an infinite set of quasivarieties $M$ in $N$ which are generated by a finitely generated group and are such that for every quasivariety $K$ ($M\varsubsetneq K\subseteq N$), an interval $[M,K]$ has the power of the continuum in the quasivariety lattice.
Keywords: nilpotent group, quasivariety, variety, independent basis of quasi-identities.
@article{AL_2021_60_2_a0,
     author = {A. I. Budkin},
     title = {Independent axiomatizability of quasivarieties of torsion-free nilpotent groups},
     journal = {Algebra i logika},
     pages = {123--136},
     publisher = {mathdoc},
     volume = {60},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2021_60_2_a0/}
}
TY  - JOUR
AU  - A. I. Budkin
TI  - Independent axiomatizability of quasivarieties of torsion-free nilpotent groups
JO  - Algebra i logika
PY  - 2021
SP  - 123
EP  - 136
VL  - 60
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2021_60_2_a0/
LA  - ru
ID  - AL_2021_60_2_a0
ER  - 
%0 Journal Article
%A A. I. Budkin
%T Independent axiomatizability of quasivarieties of torsion-free nilpotent groups
%J Algebra i logika
%D 2021
%P 123-136
%V 60
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2021_60_2_a0/
%G ru
%F AL_2021_60_2_a0
A. I. Budkin. Independent axiomatizability of quasivarieties of torsion-free nilpotent groups. Algebra i logika, Tome 60 (2021) no. 2, pp. 123-136. http://geodesic.mathdoc.fr/item/AL_2021_60_2_a0/

[1] A. I. Budkin, “Nezavisimaya aksiomatiziruemost kvazimnogoobrazii grupp”, Matem. zametki, 31:6 (1982), 817–826 | MR | Zbl

[2] A. I. Budkin, “Nezavisimaya aksiomatiziruemost kvazimnogoobrazii obobschenno razreshimykh grupp”, Algebra i logika, 25:3 (1986), 249–266 | MR | Zbl

[3] N. Ya. Medvedev, “O kvazimnogoobraziyakh $l$-grupp i grupp”, Sib. matem. zh., 26:5 (1985), 111–117 | MR | Zbl

[4] A. N. Fedorov, “Kvazitozhdestva svobodnoi 2-nilpotentnoi gruppy”, Matem. zametki, 40:5 (1986), 590–597 | MR | Zbl

[5] A. V. Kravchenko, A. M. Nurakunov, M. V. Shvidefski, “O stroenii reshetok kvazimnogoobrazii. I. Nezavisimaya aksiomatiziruemost”, Algebra i logika, 57:6 (2018), 684–710 | MR

[6] A. V. Kravchenko, A. M. Nurakunov, M. V. Shvidefski, “O stroenii reshetok kvazimnogoobrazii. II. Nerazreshimye problemy”, Algebra i logika, 58:2 (2019), 179–199 | MR | Zbl

[7] A. V. Kravchenko, A. M. Nurakunov, M. V. Shvidefski, “O stroenii reshetok kvazimnogoobrazii. III. Konechno razbivaemye bazisy”, Algebra i logika, 59:3 (2020), 323–333 | MR | Zbl

[8] M. V. Schwidefsky, “On sufficient conditions for Q-universality”, Sib. elektron. matem. izv., 17 (2020), 1043–1051 http://semr.math.nsc.ru/v17/p1043-1051.pdf | MR | Zbl

[9] M. E. Adams, W. Dziobiak, “${\mathcal Q}$-universal quasivarieties of algebras”, Proc. Am. Math. Soc., 120:4 (1994), 1053–1059 | MR | Zbl

[10] M. V. Sapir, “The lattice of quasivarieties of semigroups”, Algebra Univers., 21:2/3 (1985), 172–180 | DOI | MR | Zbl

[11] S. A. Shakhova, “On the lattice of quasivarieties of nilpotent groups of class 2”, Sib. Adv. Math., 7:3 (1997), 98–125 | MR | Zbl

[12] C. A. Shakhova, “O kvazimnogoobrazii, porozhdennom konechnoi $p$-gruppoi”, Matem. zametki, 53:3 (1993), 144–148 | MR | Zbl

[13] S. A. Shakhova, “K voprosu o moschnosti reshetki kvazimnogoobrazii nilpotentnykh grupp”, Algebra i logika, 38:3 (1999), 368–375 | MR | Zbl

[14] A. I. Budkin, “Quasivarieties of nilpotent groups of axiomatic rank 4”, Sib. elektron. matem. izv., 17 (2020), 2131–2141 http://semr.math.nsc.ru/v17/p2131-2141.pdf | MR | Zbl

[15] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970 | MR

[16] A. I. Budkin, V. A. Gorbunov, “K teorii kvazimnogoobrazii algebraicheskikh sistem”, Algebra i logika, 14:2 (1975), 123–142 | MR | Zbl

[17] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1982 | MR

[18] A. I. Budkin, Kvazimnogoobraziya grupp, Izd-vo Alt. gos. un-ta, Barnaul, 2002

[19] V. A. Gorbunov, Algebraicheskaya teoriya kvazimnogoobrazii, Sibirskaya shkola algebry i logiki, Nauch. kniga, Novosibirsk, 1999

[20] A. I. Budkin, “O reshetke kvazimnogoobrazii nilpotentnykh grupp”, Algebra i logika, 33:1 (1994), 25–36 | MR | Zbl