A semigroup of theories and its lattice of idempotent elements
Algebra i logika, Tome 60 (2021) no. 1, pp. 3-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the set of all first-order theories $T(\sigma)$ of similarity type $\sigma$, a binary operation $\{\cdot\}$ is defined by the rule $T\cdot S= {\rm Th}(\{A\times B\mid A\models T$ and $B\models S\})$ for any theories $T, S\in T(\sigma)$. The structure $\langle T(\sigma);\cdot\rangle$ forms a commutative semigroup, which is called a semigroup of theories. We prove that a semigroup of theories is an ideal extension of a semigroup $S^*_T$ by a semigroup $S_T$. The set of all idempotent elements of a semigroup of theories forms a complete lattice with respect to the partial order $\leq$ defined as $T\leq S$ iff $T\cdot S=S$ for all $T, S\in T(\sigma)$. Also the set of all idempotent complete theories forms a complete lattice with respect to $\leq$, which is not necessarily a sublattice of the lattice of idempotent theories.
Keywords: theory, complete theory, elementary equivalence, direct product of structures, semigroup, lattice.
Mots-clés : algebraic structure
@article{AL_2021_60_1_a0,
     author = {M. I. Bekenov and A. M. Nurakunov},
     title = {A semigroup of theories and its lattice of idempotent elements},
     journal = {Algebra i logika},
     pages = {3--22},
     publisher = {mathdoc},
     volume = {60},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2021_60_1_a0/}
}
TY  - JOUR
AU  - M. I. Bekenov
AU  - A. M. Nurakunov
TI  - A semigroup of theories and its lattice of idempotent elements
JO  - Algebra i logika
PY  - 2021
SP  - 3
EP  - 22
VL  - 60
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2021_60_1_a0/
LA  - ru
ID  - AL_2021_60_1_a0
ER  - 
%0 Journal Article
%A M. I. Bekenov
%A A. M. Nurakunov
%T A semigroup of theories and its lattice of idempotent elements
%J Algebra i logika
%D 2021
%P 3-22
%V 60
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2021_60_1_a0/
%G ru
%F AL_2021_60_1_a0
M. I. Bekenov; A. M. Nurakunov. A semigroup of theories and its lattice of idempotent elements. Algebra i logika, Tome 60 (2021) no. 1, pp. 3-22. http://geodesic.mathdoc.fr/item/AL_2021_60_1_a0/

[1] J. Wierzejewski, “On stability and products”, Fundam. Math., 93 (1976), 81–95 | DOI | MR | Zbl

[2] W. Hodges, Model theory, Encycl. Math. Appl., 42, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[3] M. Machover, “A note on sentences preserved under direct products and powers”, Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys., 8 (1960), 519–523 | MR | Zbl

[4] Zh. A. Almagambetov, “O klassakh aksiom, zamknutykh otnositelno zadannykh privedennykh proizvedenii i stepenei”, Algebra i logika, 4:3 (1965), 71–77 | MR | Zbl

[5] V. A. Gorbunov, Algebraicheskaya teoriya kvazimnogoobrazii, Sibirskaya shkola algebry i logiki, Nauch. kniga, Novosibirsk, 1999

[6] G. Birkhoff, Lattice theory, Colloq. Publ., 25, 3rd ed., Am. Math. Soc., Providence, RI, 1967 | MR | Zbl

[7] S. Feferman, R. L. Vaught, “The first order properties of algebraic systems”, Fundam. Math., 47 (1959), 57–103 | DOI | MR | Zbl

[8] R. L. Vaught, “On sentences holding in direct products of relational system”, Proc. Int. Congr. Math. (Amsterdam, 1954), Noordhoff, Groningen, 1954, 409

[9] F. Galvin, “Horn sentences”, Ann. Math. Logic, 1 (1970), 389–422 | DOI | MR | Zbl

[10] J. M. Weinstein, First order properties preserved by direct product, PhD Thesis, Univ. Wisconsin, Madison, 1965 | MR

[11] H. J. Keisler, “Ultraproducts and elementary classes”, Nederl. Akad. Wet., Proc., Ser. A, 64 (1961), 477–495 | MR | Zbl

[12] S. Shelah, “Every two elementarily equivalent models have isomorphic ultrapowers”, Isr. J. Math., 10 (1971), 224–233 | DOI | MR | Zbl

[13] D. Rees, “On semi-groups”, Proc. Camb. Philos. Soc., 36 (1940), 387–400 | DOI | MR