Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2020_59_6_a1, author = {P. Koepke and A. S. Morozov}, title = {Characterizations of {ITBM-computability.~I}}, journal = {Algebra i logika}, pages = {627--648}, publisher = {mathdoc}, volume = {59}, number = {6}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2020_59_6_a1/} }
P. Koepke; A. S. Morozov. Characterizations of ITBM-computability.~I. Algebra i logika, Tome 59 (2020) no. 6, pp. 627-648. http://geodesic.mathdoc.fr/item/AL_2020_59_6_a1/
[1] B. Seyfferth, P. Koepke, “Towards a theory of infinite time Blum–Shub–Smale machines”, How the world computes, Turing centenary conf. and 8th conf. comput. Europe, CiE 2012 (Cambridge, UK, June 18–23, 2012), Lect. Notes Comput. Sci., 7318, eds. S. B. Cooper et al., Springer-Verlag, Berlin, 2012, 405–415 | DOI | MR | Zbl
[2] P. Koepke, A. Morozov, “On the computational strength of infinite time Blum Shub Smale machines”, Turing centenary conference: How the World computes, Abstracts of informal presentations (Univ. Cambridge, 18-23 June, 2012), Univ. Cambridge, 2012, 78 | MR
[3] P. Kepke, A. S. Morozov, “O vychislitelnykh vozmozhnostyakh mashin Blyum–Shuba–Smeila, rabotayuschikh v beskonechnom vremeni”, Algebra i logika, 56:1 (2017), 55–92 \smallskip | MR
[4] P. Welch, “Transfinite machine models”, Turing's legacy: Developments from Turing's ideas in logic, Lect. Notes Log., Cambridge, 42, ed. R. Downey, Cambridge Univ. Press, Cambridge, 2014, 493–529 | MR
[5] P. D. Welch, “Discrete Transfinite Computation”, Turing's revolution. The impact of his ideas about computability, eds. G. Sommaruga et al., Birkhäuser/Springer, Cham, 2015, 161–185 | DOI | MR | Zbl
[6] Х. Роджерс, Теория рекурсивных функций и эффективная вычислимость, Мир, М., 1972 | MR | Zbl
[7] G. E. Sacks, Higher recursion theory, Perspect. Math. Log., Springer-Verlag, Berlin etc., 1990 | DOI | MR | Zbl
[8] J. D. Hamkins, “A survey of infinite time Turing machines”, Machines, computations, and universality, 5th int. conf. MCU 2007 (Orléans, France, September 10–13, 2007), Lect. Notes Comput. Sci., 4664, eds. J. Durand-Lose et al., Springer, Berlin, 2007, 62–71 | DOI | Zbl
[9] P. Koepke, B. Seyfferth, “Ordinal machines and admissible recursion theory”, Ann. Pure Appl. Logic, 160:3 (2009), 310–318 | DOI | MR | Zbl
[10] P. Koepke, “Ordinal computability”, Mathematical theory and computational practice, 5th conf. comput. Europe, CiE 2009 (Heidelberg, Germany, July 19–24, 2009), Lect. Notes Comput. Sci., 5635, eds. K. Ambos-Spies et al., Springer-Verlag, Berlin, 2009, 280—289 | DOI | MR | Zbl
[11] M. Carl, T. Fischbach, P. Koepke, R. Miller, M. Nasfi, G. Weckbecker, “The basic theory of infinite time register machines”, Arch. Math. Logic, 49:2 (2010), 249–273 | DOI | MR | Zbl
[12] L. Blum, M. Shub, S. Smale, “On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions, and universal machines”, Bull. Am. Math. Soc., New Ser., 21:1 (1989), 1–46 | DOI | MR | Zbl