Universal equivalence of generalized Baumslag--Solitar groups
Algebra i logika, Tome 59 (2020) no. 5, pp. 529-541.

Voir la notice de l'article provenant de la source Math-Net.Ru

A finitely generated group acting on a tree so that all vertex and edge stabilizers are infinite cyclic groups is called a generalized Baumslag–Solitar group (a $GBS$-group). Every $GBS$-group is the fundamental group $\pi_1(\mathbb{A})$ of a suitable labeled graph $\mathbb{A}$. We prove that if $\mathbb{A}$ and $\mathbb{B}$ are labeled trees, then the groups $\pi_1(\mathbb{A})$ and $\pi_1(\mathbb{B})$ are universally equivalent iff $\pi_1(\mathbb{A})$ and $\pi_1(\mathbb{B})$ are embeddable into each other. An algorithm for verifying universal equivalence is pointed out. Moreover, we specify simple conditions for checking this criterion in the case where the centralizer dimension is equal to $3$.
Keywords: generalized Baumslag–Solitar group, universal equivalence, existential equivalence, embedding of groups.
@article{AL_2020_59_5_a1,
     author = {F. A. Dudkin},
     title = {Universal equivalence of generalized {Baumslag--Solitar} groups},
     journal = {Algebra i logika},
     pages = {529--541},
     publisher = {mathdoc},
     volume = {59},
     number = {5},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2020_59_5_a1/}
}
TY  - JOUR
AU  - F. A. Dudkin
TI  - Universal equivalence of generalized Baumslag--Solitar groups
JO  - Algebra i logika
PY  - 2020
SP  - 529
EP  - 541
VL  - 59
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2020_59_5_a1/
LA  - ru
ID  - AL_2020_59_5_a1
ER  - 
%0 Journal Article
%A F. A. Dudkin
%T Universal equivalence of generalized Baumslag--Solitar groups
%J Algebra i logika
%D 2020
%P 529-541
%V 59
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2020_59_5_a1/
%G ru
%F AL_2020_59_5_a1
F. A. Dudkin. Universal equivalence of generalized Baumslag--Solitar groups. Algebra i logika, Tome 59 (2020) no. 5, pp. 529-541. http://geodesic.mathdoc.fr/item/AL_2020_59_5_a1/

[1] J.-P. Serre, Trees, Springer-Verlag, Berlin–Heidelberg–New York, 1980 | Zbl

[2] M. Clay, M. Forester, “On the isomorphism problem for generalized Baumslag–Solitar groups”, Algebr. Geom. Topol., 8:4 (2008), 2289–2322 | DOI | MR | Zbl

[3] D. J. S. Robinson, “Generalized Baumslag–Solitar groups: a survey of recent progress”, Groups St Andrews 2013, Sel. papers conf. (St. Andrews, UK, August 3–11, 2013), London Math. Soc. Lecture Note Ser., 422, eds. C. M. Campbell et al., Cambridge Univ. Press, Cambridge, 2015, 457–468 | MR | Zbl

[4] A. Myasnikov, P. Shumyatsky, “Discriminating groups and $c$-dimension”, J. Group Theory, 7:1 (2004), 135–142 | MR | Zbl

[5] A. J. Dunkan, I. V. Kazachkov, V. N. Remeslennikov, “Centraliser dimension and universal classes of groups”, Sib. elektron. matem. izv., 3 (2006), 197–215 http://semr.math.nsc.ru/v3/p197-215.pdf | MR

[6] F. A. Dudkin, “O tsentralizatornoi razmernosti obobschennykh grupp Baumslaga–Solitera”, Algebra i logika, 55:5 (2016), 611–615 | MR | Zbl

[7] F. A. Dudkin, “O reshetke tsentralizatorov i tsentralizatornoi razmernosti obobschennykh grupp Baumslaga–Solitera”, Sib. matem. zh., 59:3 (2018), 514–528 | MR | Zbl

[8] F. A. Dudkin, “Computation of the centralizer dimension of generalized Baumslag–Solitar groups”, Sib. elektron. matem. izv., 15 (2018), 1823–1841 http://semr.math.nsc.ru/v15/p1823-1841.pdf | MR | Zbl

[9] O. Bogopolski, Introduction to group theory, EMS Textbk. Math., EMS, 2008 | MR | Zbl

[10] M. Forester, “Deformation and rigidity of simplicial group actions on trees”, Geom. Topol., 6:1 (2002), 219–267 | DOI | MR | Zbl

[11] M. Clay, M. Forester, “Whitehead moves for $G$-trees”, Bull. Lond. Math. Soc., 41:2 (2009), 205–212 | DOI | MR | Zbl

[12] F. A. Dudkin, “On the embedding problem for generalized Baumslag–Solitar groups”, J. Group Theory, 18:4 (2015), 655–684 | MR | Zbl

[13] H. Bass, “Covering theory for graphs of groups”, J. Pure Appl. Algebra, 89:1/2 (1993), 3–47 | DOI | MR | Zbl