Algebras of binary formulas for compositions of theories
Algebra i logika, Tome 59 (2020) no. 4, pp. 432-457.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider algebras of binary formulas for compositions of theories both in the general case and as applied to $\aleph_0$-categorical, strongly minimal, and stable theories, linear preorders, cyclic preorders, and series of finite structures. It is shown that $e$-definable compositions preserve isomorphisms and elementary equivalence and have basicity formed by basic formulas of the initial theories. We find criteria for $e$-definable compositions to preserve $\aleph_0$-categoricity, strong minimality, and stability. It is stated that $e$-definable compositions of theories specify compositions of algebras of binary formulas. A description of forms of these algebras is given relative to compositions with linear orders, cyclic orders, and series of finite structures.
Keywords: algebra of binary formulas, composition of theories, $\aleph_0$-categorical theory, strongly minimal theory, stable theory, linear preorder, cyclic preorder.
Mots-clés : $e$-definable composition
@article{AL_2020_59_4_a1,
     author = {D. Yu. Emelyanov and B. Sh. Kulpeshov and S. V. Sudoplatov},
     title = {Algebras of binary formulas for compositions of theories},
     journal = {Algebra i logika},
     pages = {432--457},
     publisher = {mathdoc},
     volume = {59},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2020_59_4_a1/}
}
TY  - JOUR
AU  - D. Yu. Emelyanov
AU  - B. Sh. Kulpeshov
AU  - S. V. Sudoplatov
TI  - Algebras of binary formulas for compositions of theories
JO  - Algebra i logika
PY  - 2020
SP  - 432
EP  - 457
VL  - 59
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2020_59_4_a1/
LA  - ru
ID  - AL_2020_59_4_a1
ER  - 
%0 Journal Article
%A D. Yu. Emelyanov
%A B. Sh. Kulpeshov
%A S. V. Sudoplatov
%T Algebras of binary formulas for compositions of theories
%J Algebra i logika
%D 2020
%P 432-457
%V 59
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2020_59_4_a1/
%G ru
%F AL_2020_59_4_a1
D. Yu. Emelyanov; B. Sh. Kulpeshov; S. V. Sudoplatov. Algebras of binary formulas for compositions of theories. Algebra i logika, Tome 59 (2020) no. 4, pp. 432-457. http://geodesic.mathdoc.fr/item/AL_2020_59_4_a1/

[1] S. V. Sudoplatov, Klassifikatsiya schetnykh modelei polnykh teorii, v 2 ch., Monografii NGTU, 2-e izd., dop., NGTU, Novosibirsk, 2018

[2] I. V. Shulepov, S. V. Sudoplatov, “Algebras of distributions for isolating formulas of a complete theory”, Sib. elektron. matem. izv., 11 (2014), 380–407 http://semr.math.nsc.ru/v11/p380-407.pdf | MR | Zbl

[3] S. V. Sudoplatov, “Algebras of distributions for semi-isolating formulas of a complete theory”, Sib. elektron. matem. izv., 11 (2014), 408–433 http://semr.math.nsc.ru/v11/p408-433.pdf | MR | Zbl

[4] S. V. Sudoplatov, “Algebras of distributions for binary semi-isolating formulas for families of isolated types and for countably categorical theories”, Int. Math. Forum, 9:21 (2014), 1029–1033 | DOI | MR

[5] S. V. Sudoplatov, “Forcing of infinity and algebras of distributions of binary semi-isolating formulas for strongly minimal theories”, Math. Stat., 2:5 (2014), 183–187 | MR

[6] B. Sh. Kulpeshov, S. V. Sudoplatov, “Ob algebrakh raspredelenii binarnykh formul dlya vpolne $o$-minimalnykh teorii”, Izv. NAN RK. Ser. fiz.-matem., 2:300 (2015), 5–13

[7] D. Yu. Emelyanov, “Ob algebrakh raspredelenii binarnykh formul teorii unarov”, Izv. Irkutskogo gos. un-ta. Ser. Matem., 17 (2016), 23–36 | Zbl

[8] D. Yu. Emelyanov, B. Sh. Kulpeshov, S. V. Sudoplatov, “Algebry raspredelenii binarnykh formul v schetno kategorichnykh slabo $o$-minimalnykh strukturakh”, Algebra i logika, 56:1 (2017), 20–54 | MR | Zbl

[9] D. Yu. Emelyanov, S. V. Sudoplatov, “O determinirovannykh i pogloschayuschikh algebrakh binarnykh formul poligonometricheskikh teorii”, Izv. Irkutskogo gos. un-ta. Ser. Matem., 20 (2017), 32–44 | Zbl

[10] K. A. Baikalova, D. Yu. Emelyanov, B. Sh. Kulpeshov, E. A. Palyutin, S. V. Sudoplatov, “Ob algebrakh raspredelenii binarnykh izoliruyuschikh formul teorii abelevykh grupp i ikh uporyadochennykh obogaschenii”, Izv. vuzov. Matem., 2018, no. 4, 3–15 | MR | Zbl

[11] D. Yu. Emelyanov, B. Sh. Kulpeshov, S. V. Sudoplatov, “Ob algebrakh raspredelenii binarnykh izoliruyuschikh formul dlya vpolne $o$-minimalnykh teorii”, Algebra i logika, 57:6 (2018), 662–683 | MR

[12] F. Kharari, Teoriya grafov, URSS, M., 2003

[13] S. V. Sudoplatov, E. V. Ovchinnikova, Diskretnaya matematika, uchebnik i praktikum dlya vuzov, 5-e izd., ispr. i dop., Yurait, M., 2020

[14] V. A. Artamonov, V. N. Salii, L. A. Skornyakov i dr., Obschaya algebra, Sprav. matem. b-ka, 2, ed. L. A. Skornyakov, Nauka, Gl. red. fiz.-mat. lit., M., 1991 | MR

[15] E. S. Lyapin, Polugruppy, Gos. izd-vo fiz.-mat. lit., M., 1960 | MR

[16] S. V. Sudoplatov, “Tranzitivnye razmescheniya algebraicheskikh sistem”, Sib. matem. zh., 40:6 (1999), 1347–1351 | MR | Zbl

[17] S. V. Sudoplatov, “Combinations of structures”, Bull. Irkutsk State Univ., Ser. Mathem., 24 (2018), 82–101 | DOI | MR | Zbl

[18] Yu. Zaffe, E. A. Palyutin, S. S. Starchenko, “Modeli superstabilnykh khornovykh teorii”, Algebra i logika, 24:3 (1985), 278–326 | MR

[19] J. Reineke, “Minimale Gruppen”, Z. Math. Logik Grundlagen Math., 21 (1975), 357–359 | DOI | MR | Zbl

[20] Y. R. Baisalov, K. A. Meirembekov, A. T. Nurtazin, “Definably minimal models”, Model theory and algebra, France-Kazakhstan conf. on model theory and algebra (Astana, 2005), 8–11 | MR

[21] J. Baldwin, A. Lachlan, “On strongly minimal sets”, J. Symb. Log., 36:1 (1971), 79–96 | DOI | MR | Zbl

[22] S. Shelah, Classification theory and the number of non-isomorphic models, Stud. Logic Found. Math., 92, 2nd rev. ed., North-Holland, Amsterdam etc., 1990 | MR | Zbl

[23] V. Harnik, L. Harrington, “Fundamentals of forking”, Ann. Pure Appl. Logic, 26:3 (1984), 245–286 | DOI | MR | Zbl

[24] B. Sh. Kulpeshov, H. D. Macpherson, “Minimality conditions on circularly ordered structures”, Math. Log. Q., 51:4 (2005), 377–399 | DOI | MR | Zbl

[25] B. Sh. Kulpeshov, “On $\aleph_0$-categorical weakly circularly minimal structures”, Math. Log. Q., 52:6 (2006), 555–574 | DOI | MR | Zbl

[26] B. Sh. Kulpeshov, “Opredelimye funktsii v $\aleph_0$-kategorichnykh slabo tsiklicheski minimalnykh strukturakh”, Sib. matem. zh., 50:2 (2009), 356–379 | MR | Zbl

[27] B. Sh. Kulpeshov, “O nerazlichimosti mnozhestva v tsiklicheski uporyadochennykh strukturakh”, Sib. elektron. matem. izv., 12 (2015), 255–266 http://semr.math.nsc.ru/v12/p255-266.pdf | Zbl

[28] B. Sh. Kulpeshov, “On almost binarity in weakly circularly minimal structures”, Eurasian Math. J., 7:2 (2016), 38–49 | MR | Zbl

[29] M. Droste, M. Giraudet, H. D. Macpherson, N. Sauer, “Set-homogeneous graphs”, J. Comb. Theory, Ser. B, 62:1 (1994), 63–95 | DOI | MR | Zbl

[30] P. J. Cameron, “Orbits of permutation groups on unordered sets. II”, J. Lond. Math. Soc., II. Ser., 23:2 (1981), 249–264 | DOI | MR | Zbl

[31] A. H. Lachlan, “Countable homogeneous tournaments”, Trans. Am. Math. Soc., 284 (1984), 431–461 | DOI | MR | Zbl