Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2020_59_3_a7, author = {P. E. Alaev}, title = {Polynomially computable structures with finitely many generators}, journal = {Algebra i logika}, pages = {385--394}, publisher = {mathdoc}, volume = {59}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2020_59_3_a7/} }
P. E. Alaev. Polynomially computable structures with finitely many generators. Algebra i logika, Tome 59 (2020) no. 3, pp. 385-394. http://geodesic.mathdoc.fr/item/AL_2020_59_3_a7/
[1] D. Cenzer, J. Remmel, “Polynomial-time versus recursive models”, Ann. Pure Appl. Logic, 54:1 (1991), 17–58 | DOI | MR | Zbl
[2] D. Cenzer, J. B. Remmel, “Complexity theoretic model theory and algebra”, Handbook of recursive mathematics, v. 1, Stud. Logic Found. Math., 138, Recursive model theory, eds. Yu. L. Ershov et al., Elsevier, Amsterdam, 1998, 381–513 | DOI | MR | Zbl
[3] P. E. Alaev, “Struktury, vychislimye za polinomialnoe vremya. I”, Algebra i logika, 55:6 (2016), 647–669 | MR
[4] P. E. Alaev, V. L. Selivanov, “Polya algebraicheskikh chisel, vychislimye za polinomialnoe vremya. I”, Algebra i logika, 58:6 (2019), 673–705 | MR
[5] A. Akho, Dzh. Khopkroft, Dzh. Ulman, Postroenie i analiz vychislitelnykh algoritmov, Mir, M., 1979
[6] N. S. Romanovskii, “O nekotorykh algoritmicheskikh problemakh dlya razreshimykh grupp”, Algebra i logika, 13:1 (1974), 26–34
[7] M. Aschenbrenner, “Ideal membership in polynomial rings over the integers”, J. Am. Math. Soc., 17:2 (2004), 407–441 | DOI | MR | Zbl
[8] E. W. Mayr, “Some complexity results for polynomial ideals”, J. Complexity, 13:3 (1997), 303–325 | DOI | MR | Zbl