Polynomially computable structures with finitely many generators
Algebra i logika, Tome 59 (2020) no. 3, pp. 385-394.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AL_2020_59_3_a7,
     author = {P. E. Alaev},
     title = {Polynomially computable structures with finitely many generators},
     journal = {Algebra i logika},
     pages = {385--394},
     publisher = {mathdoc},
     volume = {59},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2020_59_3_a7/}
}
TY  - JOUR
AU  - P. E. Alaev
TI  - Polynomially computable structures with finitely many generators
JO  - Algebra i logika
PY  - 2020
SP  - 385
EP  - 394
VL  - 59
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2020_59_3_a7/
LA  - ru
ID  - AL_2020_59_3_a7
ER  - 
%0 Journal Article
%A P. E. Alaev
%T Polynomially computable structures with finitely many generators
%J Algebra i logika
%D 2020
%P 385-394
%V 59
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2020_59_3_a7/
%G ru
%F AL_2020_59_3_a7
P. E. Alaev. Polynomially computable structures with finitely many generators. Algebra i logika, Tome 59 (2020) no. 3, pp. 385-394. http://geodesic.mathdoc.fr/item/AL_2020_59_3_a7/

[1] D. Cenzer, J. Remmel, “Polynomial-time versus recursive models”, Ann. Pure Appl. Logic, 54:1 (1991), 17–58 | DOI | MR | Zbl

[2] D. Cenzer, J. B. Remmel, “Complexity theoretic model theory and algebra”, Handbook of recursive mathematics, v. 1, Stud. Logic Found. Math., 138, Recursive model theory, eds. Yu. L. Ershov et al., Elsevier, Amsterdam, 1998, 381–513 | DOI | MR | Zbl

[3] P. E. Alaev, “Struktury, vychislimye za polinomialnoe vremya. I”, Algebra i logika, 55:6 (2016), 647–669 | MR

[4] P. E. Alaev, V. L. Selivanov, “Polya algebraicheskikh chisel, vychislimye za polinomialnoe vremya. I”, Algebra i logika, 58:6 (2019), 673–705 | MR

[5] A. Akho, Dzh. Khopkroft, Dzh. Ulman, Postroenie i analiz vychislitelnykh algoritmov, Mir, M., 1979

[6] N. S. Romanovskii, “O nekotorykh algoritmicheskikh problemakh dlya razreshimykh grupp”, Algebra i logika, 13:1 (1974), 26–34

[7] M. Aschenbrenner, “Ideal membership in polynomial rings over the integers”, J. Am. Math. Soc., 17:2 (2004), 407–441 | DOI | MR | Zbl

[8] E. W. Mayr, “Some complexity results for polynomial ideals”, J. Complexity, 13:3 (1997), 303–325 | DOI | MR | Zbl