Verbally closed subgroups of free solvable groups
Algebra i logika, Tome 59 (2020) no. 3, pp. 367-384.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish a series of results on verbally closed and $l$-verbally closed subgroups of free solvable groups; here $l$ is a natural number and the concept of $l$-verbal closedness is a generalization of the concept of verbal closedness corresponding to the value $l=1$. Under certain assumptions, these subgroups turn out to be retracts and, consequently, are algebraically closed.
Keywords: free solvable group, verbally closed subgroup, $l$-verbally closed subgroup.
@article{AL_2020_59_3_a6,
     author = {V. A. Roman'kov and E. I. Timoshenko},
     title = {Verbally closed subgroups of free solvable groups},
     journal = {Algebra i logika},
     pages = {367--384},
     publisher = {mathdoc},
     volume = {59},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2020_59_3_a6/}
}
TY  - JOUR
AU  - V. A. Roman'kov
AU  - E. I. Timoshenko
TI  - Verbally closed subgroups of free solvable groups
JO  - Algebra i logika
PY  - 2020
SP  - 367
EP  - 384
VL  - 59
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2020_59_3_a6/
LA  - ru
ID  - AL_2020_59_3_a6
ER  - 
%0 Journal Article
%A V. A. Roman'kov
%A E. I. Timoshenko
%T Verbally closed subgroups of free solvable groups
%J Algebra i logika
%D 2020
%P 367-384
%V 59
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2020_59_3_a6/
%G ru
%F AL_2020_59_3_a6
V. A. Roman'kov; E. I. Timoshenko. Verbally closed subgroups of free solvable groups. Algebra i logika, Tome 59 (2020) no. 3, pp. 367-384. http://geodesic.mathdoc.fr/item/AL_2020_59_3_a6/

[1] W. Hodges, Model theory, Encycl. Math. Appl., 42, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[2] W. R. Scott, “Algebraically closed groups”, Proc. Am. Math. Soc., 2 (1951), 118–121 | DOI | MR | Zbl

[3] A. Myasnikov, V. Roman'kov, “Verbally closed subgroups of free groups”, J. Group Theory, 17:1 (2014), 29–40 | DOI | MR | Zbl

[4] A. M. Mazhuga, Verbalno zamknutye podgruppy, diss. kand. fiz.-mat. nauk, MGU, M., 2018

[5] G. M. Bergman, “Supports of derivations, free factorizations, and ranks of fixed subgroups in free groups”, Trans. Am. Math. Soc., 351:4 (1999), 1531–1550 | DOI | MR | Zbl

[6] Unsolved problems in group theory. The Kourovka notebook, 19, Sobolev Institute of Mathematics, Novosibirsk, 2018 http://www.math.nsc.ru/ãlglog/19tkt.pdf

[7] G. Baumslag, A. G. Myasnikov, V. Shpilrain, “Open problems in combinatorial group theory. Second edition”, Combinatorial and geometric group theory, Proc. AMS special session on combinatorial group theory (New York, NY, USA, November 4–5, 2000) and AMS special session on computational group theory (Hoboken, NJ, USA, April 28–29, 2001), Contemp. Math., 296, eds. S. Cleary et al., Am. Math. Soc., Providence, RI, 2002, 1–38 | DOI | MR | Zbl

[8] I. Snopce, S. Tanushevski, P. Zalesskii, Retracts of free groups and a question of Bergman, arXiv: 1902.02378 [math.GR]

[9] V. A. Romankov, N. G. Khisamiev, “Verbalno i ekzistentsialno zamknutye podgruppy svobodnykh nilpotentnykh grupp”, Algebra i logika, 52:4 (2013), 502–525 | MR | Zbl

[10] A. M. Mazhuga, “On free decompositions of verbally closed subgroups in free products of finite groups”, J. Group Theory, 20:5 (2017), 971–986 | DOI | MR | Zbl

[11] A. M. Mazhuga, “Strongly verbally closed groups”, J. Algebra, 493 (2018), 171–184 | DOI | MR | Zbl

[12] A. A. Klyachko, A. M. Mazhuga, “Verbalno zamknutye pochti svobodnye podgruppy”, Matem. sb., 209:6 (2018), 75–82 | MR | Zbl

[13] A. A. Klyachko, A. M. Mazhuga, V. Yu. Miroshnichenko, “Virtually free finite-normal-subgroup-free groups are strongly verbally closed”, J. Algebra, 510 (2018), 319–330 | DOI | MR | Zbl

[14] E. I.Timoshenko, “Testovye elementy i testovyi rang svobodnoi metabelevoi gruppy”, Sib. matem. zh., 41:6 (2000), 1451–1456 | MR | Zbl

[15] V. A. Romankov, “O testovykh elementakh svobodnykh razreshimykh grupp ranga 2”, Algebra i logika, 40:2 (2001), 192–201 | MR | Zbl

[16] E. I. Timoshenko, “Vychislenie testovogo ranga svobodnoi razreshimoi gruppy”, Algebra i logika, 45:4 (2006), 447–457 | MR | Zbl

[17] Ch. K. Gupta, E. I. Timoshenko, “O testovom range nekotorykh svobodnykh polinilpotentnykh grupp”, Algebra i logika, 42:1 (2003), 37–50 | MR | Zbl

[18] E. I. Timoshenko, Endomorfizmy i universalnye teorii razreshimykh grupp, izd-vo NGTU, Novosibirsk, 2011

[19] C. K. Gupta, V. A. Roman'kov, E. I. Timoshenko, “Test ranks of free nilpotent groups”, Commun. Algebra, 33 (2005), 1627–1634 | DOI | MR | Zbl

[20] V. N. Remeslennikov, V. G. Sokolov, “Nekotorye svoistva vlozheniya Magnusa”, Algebra i logika, 9:5 (1970), 566–578 | MR

[21] R. Kroull, R. Foks, Vvedenie v teoriyu uzlov, Mir, M., 1967 | MR

[22] V. A. Roman'kov, Essays in algebra and cryptology. Solvable groups, Dostoevsky Omsk State University Publ. House, Omsk, 2018

[23] C. K. Gupta, N. S. Romanovski, “On torsion in factors of polynilpotent series of a group with a single relation”, Int. J. Algebra Comput., 14:4 (2004), 513–523 | DOI | MR | Zbl

[24] I. Lewin, “A note on zero divisors in group-rings”, Proc. Am. Math. Soc., 31:2 (1972), 357–359 | DOI | MR | Zbl

[25] G. Baumslag, “Some subgroup theorems for free ${\upsilon}$-groups”, Trans. Am. Math. Soc., 108 (1963), 516–525 | MR | Zbl