Divisible rigid groups. IV. Definable subgroups
Algebra i logika, Tome 59 (2020) no. 3, pp. 344-366
Voir la notice de l'article provenant de la source Math-Net.Ru
A group $G$ is said to be rigid if it contains a normal series $$G=G_1>G_2>\ldots>G_m>G_{m+1}=1,$$ whose quotients $G_i/G_{i+1}$ are Abelian and, when treated as right $\mathbb{Z} [G/G_i]$-modules, are torsion-free. A rigid group $G$ is divisible if elements of the quotient $G_i/G_{i+1}$ are divisible by nonzero elements of the ring $\mathbb{Z} [G/G_i]$. We describe subgroups of a divisible rigid group which are definable in the signature of the theory of groups without parameters and with parameters.
Mots-clés :
rigid group, divisible group
Keywords: definable subgroup.
Keywords: definable subgroup.
@article{AL_2020_59_3_a5,
author = {N. S. Romanovskii},
title = {Divisible rigid groups. {IV.} {Definable} subgroups},
journal = {Algebra i logika},
pages = {344--366},
publisher = {mathdoc},
volume = {59},
number = {3},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2020_59_3_a5/}
}
N. S. Romanovskii. Divisible rigid groups. IV. Definable subgroups. Algebra i logika, Tome 59 (2020) no. 3, pp. 344-366. http://geodesic.mathdoc.fr/item/AL_2020_59_3_a5/