Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2020_59_3_a2, author = {A. Kh. Zhurtov and D. V. Lytkina and V. D. Mazurov}, title = {Primary cosets in groups}, journal = {Algebra i logika}, pages = {315--322}, publisher = {mathdoc}, volume = {59}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2020_59_3_a2/} }
A. Kh. Zhurtov; D. V. Lytkina; V. D. Mazurov. Primary cosets in groups. Algebra i logika, Tome 59 (2020) no. 3, pp. 315-322. http://geodesic.mathdoc.fr/item/AL_2020_59_3_a2/
[1] M. T. Lewis, “Camina groups, Camina pairs, and generalization”, Group theory and computation, Invited papers based on the presentations at the workshop "‘Group theory and computational methods"’ (Bangalore, India, November 5–14, 2016), Indian Stat. Inst. Ser., eds. N. S. N. Sastry, M. K. Yadav, Springer, Singapore, 2018, 41–174 | MR
[2] S. Vei, A. Kh. Zhurtov, D. V. Lytkina, V. D. Mazurov, “Konechnye gruppy, blizkie k gruppam Frobeniusa”, Sib. matem. zh., 60:5 (2019), 1035–1040 | MR
[3] X. Wei, W. B. Guo, D. V. Lytkina, V. D. Mazurov, A. Kh. Zhurtov, “Solubility of finite generalized Frobenius groups with the kernel of odd index”, Izv. NAN Armenii: Matem., 55:1 (2020), 88–92 | MR | Zbl
[4] W. Burnside, “On an unsettled question in the theory of discontinuous groups”, Q. J. Pure Appl. Math., 33 (1902), 230–238 | Zbl
[5] W. Burnside, “On groups in which every two conjugate operations are permutable”, Proc. Lond. Math. Soc., 35 (1903), 28–37 | MR | Zbl
[6] C. Hopkins, “Finite groups in which conjugate operations are commutative”, Am. J. Math., 51 (1929), 35–41 | DOI | MR | Zbl
[7] F. Levi, B. L. van der Waerden, “Über eine besondere Klasse von Gruppen”, Abh. Math. Semin. Univ. Hamb., 9 (1932), 157–158 | MR
[8] B. H. Neumann, “Groups with automorphisms that leave only the neutral element fixed”, Arch. Math., 7:1 (1956), 1–5 | DOI | MR | Zbl
[9] A. Kh. Zhurtov, “O regulyarnykh avtomorfizmakh poryadka 3 i parakh Frobeniusa”, Sib. matem. zh., 41:2 (2000), 329–338 | MR | Zbl
[10] C. H. Li, L. Wang, “Finite REA-groups are solvable”, J. Algebra, 522 (2019), 195–217 | DOI | MR | Zbl
[11] B. Huppert, Endliche Gruppen I, Grundlehren Math. Wiss., 134, Springer-Verlag, Berlin a.o., 1979 | MR | Zbl