Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2020_59_3_a1, author = {S. A. Badaev and N. A. Bazhenov and B. S. Kalmurzaev}, title = {The structure of computably enumerable preorder relations}, journal = {Algebra i logika}, pages = {293--314}, publisher = {mathdoc}, volume = {59}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2020_59_3_a1/} }
S. A. Badaev; N. A. Bazhenov; B. S. Kalmurzaev. The structure of computably enumerable preorder relations. Algebra i logika, Tome 59 (2020) no. 3, pp. 293-314. http://geodesic.mathdoc.fr/item/AL_2020_59_3_a1/
[1] Yu. L. Ershov, “Pozitivnye ekvivalentnosti”, Algebra i logika, 10:6 (1971), 620–650 | MR
[2] Yu. L. Ershov, Teoriya numeratsii, Nauka, M., 1977 | MR
[3] C. Bernardi, “On the relation provable equivalence and on partitions in effectively inseparable sets”, Stud. Log., 40:1 (1981), 29–37 | DOI | MR | Zbl
[4] C. Bernardi, A. Sorbi, “Classifying positive equivalence relations”, J. Symb. Log., 48:3 (1983), 529–538 | DOI | MR | Zbl
[5] S. Gao, P. Gerdes, “Computably enumerable equivalence relations”, Stud. Log., 67:1 (2001), 27–59 | DOI | MR | Zbl
[6] U. Andrews, A. Sorbi, “Joins and meets in the structure of ceers”, Computability, 8:3/4 (2019), 193–241 | DOI | MR | Zbl
[7] U. Andrews, A. Sorbi, “Jumps of computably enumerable equivalence relations”, Ann. Pure Appl. Logic, 169:3 (2018), 243–259 | DOI | MR | Zbl
[8] U. Andrews, N. Schweber, A. Sorbi, “The theory of ceers computes true arithmetic”, Ann. Pure Appl. Logic, 171:8 (2020), 102811, 22 pp. | DOI | MR | Zbl
[9] U. Andrews, S. Lempp, J. S. Miller, K. M. Ng, L. S. Mauro, A. Sorbi, “Universal computably enumerable equivalence relations”, J. Symb. Log., 79:1 (2014), 60–88 | DOI | MR | Zbl
[10] U. Andrews, S. Badaev, A. Sorbi, “A survey on universal computably enumerable equivalence relations”, Computability and complexity, Essays dedicated to Rodney G. Downey on the occasion of his 60th birthday, Lect. Notes Comput. Sci., 10010, eds. A. Day et al., Springer, Cham, 2017, 418–451 | DOI | MR | Zbl
[11] S. Badaev, A. Sorbi, “Weakly precomplete computably enumerable equivalence relations”, Math. Log. Q., 62:1/2 (2016), 111–127 | DOI | MR | Zbl
[12] J. C. Rosenstein, Linear orderings, Pure Appl. Math., 98, Academic Press, New York etc., 1982 | MR | Zbl
[13] N. A. Bazhenov, B. S. Kalmurzaev, “O temnykh vychislimo perechislimykh otnosheniyakh ekvivalentnosti”, Sib. matem. zh., 59:1 (2018), 29–40 | MR | Zbl
[14] A. H. Lachlan, “Initial segments of one-one degrees”, Pac. J. Math., 29:2 (1969), 351–366 | DOI | MR | Zbl
[15] P. G. Odifreddi, Classical recursion theory, v. II, Stud. Log. Found. Math., 143, Elsevier, Amsterdam, 1999 | MR | Zbl