Automorphisms of partially commutative metabelian groups
Algebra i logika, Tome 59 (2020) no. 2, pp. 239-259.

Voir la notice de l'article provenant de la source Math-Net.Ru

Automorphisms of a partially commutative metabelian group whose defining graph contains no cycles are studied. It is proved that an $IA$-automorphism of such a group is identical if it fixes all hanging and isolated vertices of the graph. The concepts of a factor automorphism and of a matrix automorphism are introduced. It is stated that every factor automorphism is represented as the product of an automorphism of the defining graph and a matrix automorphism.
Mots-clés : automorphism
Keywords: partially commutative group, metabelian group.
@article{AL_2020_59_2_a4,
     author = {E. I. Timoshenko},
     title = {Automorphisms of partially commutative metabelian groups},
     journal = {Algebra i logika},
     pages = {239--259},
     publisher = {mathdoc},
     volume = {59},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2020_59_2_a4/}
}
TY  - JOUR
AU  - E. I. Timoshenko
TI  - Automorphisms of partially commutative metabelian groups
JO  - Algebra i logika
PY  - 2020
SP  - 239
EP  - 259
VL  - 59
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2020_59_2_a4/
LA  - ru
ID  - AL_2020_59_2_a4
ER  - 
%0 Journal Article
%A E. I. Timoshenko
%T Automorphisms of partially commutative metabelian groups
%J Algebra i logika
%D 2020
%P 239-259
%V 59
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2020_59_2_a4/
%G ru
%F AL_2020_59_2_a4
E. I. Timoshenko. Automorphisms of partially commutative metabelian groups. Algebra i logika, Tome 59 (2020) no. 2, pp. 239-259. http://geodesic.mathdoc.fr/item/AL_2020_59_2_a4/

[1] M. R. Laurence, “A generating set for the automorphism group of a graph group”, J. Lond. Math. Soc., II. Ser., 52:2 (1995), 318–334 | MR | Zbl

[2] A. J. Duncan, I. V. Kazachkov, V. N. Remeslennikov, “Automorphisms of partially commutative groups. I: Linear subgroups”, Groups Geom. Dyn., 4:4 (2010), 739–757 | MR | Zbl

[3] R. Charney, J. Crisp, K. Vogtmann, “Automorphisms of two-dimensional right-angled Artin groups”, Geom. Topol., 11 (2007), 2227–2264, arXiv: math/0610980v2 | MR | Zbl

[4] R. Charney, “An introduction to right-angled Artin groups”, Geom. Dedicata, 125:1 (2007), 141–158, arXiv: math/0610668v1 | MR | Zbl

[5] G. A. Noskov, “The image of the automorphism group of a graph group under the abelianization map”, Vestn. NGU. Ser. matem., mekh., inform., 12:2 (2012), 83–102 | Zbl

[6] P. V. Ushakov, “$IA$-avtomorfizmy metabelevykh proizvedenii dvukh abelevykh grupp”, Matem. zametki, 70:3 (2001), 446–457 | MR | Zbl

[7] E. I. Timoshenko, “Ob odnom predstavlenii gruppy avtomorfizmov chastichno kommutativnoi metabelevoi gruppy”, Matem. zametki, 97:2 (2015), 286–295 | Zbl

[8] V. N. Remeslennikov, A. V. Treier, “Struktura grupp avtomorfizmov dlya chastichno kommutativnykh dvustupenno nilpotentnykh grupp”, Algebra i logika, 49:1 (2010), 60–97 | MR | Zbl

[9] Ch. K. Gupta, E. I. Timoshenko, “Chastichno kommutativnye metabelevy gruppy: tsentralizatory i elementarnaya ekvivalentnost”, Algebra i logika, 48:3 (2009), 309–341 | MR | Zbl

[10] V. Ya. Bloschitsyn, E. I. Timoshenko, “Sravnenie universalnykh teorii chastichno kommutativnykh metabelevykh grupp”, Sib. matem. zh., 58:3 (2017), 497–509 | MR

[11] A. A. Mischenko, A. V. Treier, “Grafy kommutativnosti dlya chastichno kommutativnykh dvustupenno nilpotentnykh $\mathbb Q$-grupp”, Sib. elektron. matem. izv., 4 (2007), 460–481 http://semr.math.nsc.ru/v4/p460-481.pdf

[12] A. A. Mischenko, A. V. Treier, “Struktura tsentralizatorov dlya chastichno kommutativnoi dvustupenno nilpotentnoi $\mathbb Q$-gruppy”, Vest. Omsk. gos. un-ta, 2007, spets. vypusk, 98–102

[13] Kh. Neiman, Mnogoobraziya grupp, Mir, M., 1969