Automorphisms of partially commutative metabelian groups
Algebra i logika, Tome 59 (2020) no. 2, pp. 239-259

Voir la notice de l'article provenant de la source Math-Net.Ru

Automorphisms of a partially commutative metabelian group whose defining graph contains no cycles are studied. It is proved that an $IA$-automorphism of such a group is identical if it fixes all hanging and isolated vertices of the graph. The concepts of a factor automorphism and of a matrix automorphism are introduced. It is stated that every factor automorphism is represented as the product of an automorphism of the defining graph and a matrix automorphism.
Mots-clés : automorphism
Keywords: partially commutative group, metabelian group.
@article{AL_2020_59_2_a4,
     author = {E. I. Timoshenko},
     title = {Automorphisms of partially commutative metabelian groups},
     journal = {Algebra i logika},
     pages = {239--259},
     publisher = {mathdoc},
     volume = {59},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2020_59_2_a4/}
}
TY  - JOUR
AU  - E. I. Timoshenko
TI  - Automorphisms of partially commutative metabelian groups
JO  - Algebra i logika
PY  - 2020
SP  - 239
EP  - 259
VL  - 59
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2020_59_2_a4/
LA  - ru
ID  - AL_2020_59_2_a4
ER  - 
%0 Journal Article
%A E. I. Timoshenko
%T Automorphisms of partially commutative metabelian groups
%J Algebra i logika
%D 2020
%P 239-259
%V 59
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2020_59_2_a4/
%G ru
%F AL_2020_59_2_a4
E. I. Timoshenko. Automorphisms of partially commutative metabelian groups. Algebra i logika, Tome 59 (2020) no. 2, pp. 239-259. http://geodesic.mathdoc.fr/item/AL_2020_59_2_a4/