A restricted fragment of the Lambek calculus with iteration and intersection operations
Algebra i logika, Tome 59 (2020) no. 2, pp. 190-214

Voir la notice de l'article provenant de la source Math-Net.Ru

The Lambek calculus (a variant of intuitionistic linear logic initially introduced for mathematical linguistics) enjoys natural interpretations over the algebra of formal languages ($\mathrm{L}$-models) and over the algebra of binary relations which are subsets of a given transitive relation (R-models). For both classes of models there are completeness theorems (Andréka and Mikulás [J. Logic Lang. Inf., 3, No. 1 (1994), 1—37]; Pentus [Ann. Pure Appl. Logic, 75, Nos. 1/2 (1995), 179—213; Fund. Prikl. Mat., 5, No. 1 (1999), 193—219]). The operations of the Lambek calculus include product and two divisions, left and right. We consider an extension of the Lambek calculus with intersection and iteration (Kleene star). It is proved that this extension is incomplete both w.r.t. $\mathrm{L}$-models and w.r.t. $\mathrm{R}$-models. We introduce a restricted fragment, in which iteration is allowed only in denominators of division operations. For this fragment we prove completeness w.r.t. $\mathrm{R}$-models. We also prove completeness w.r.t. $\mathrm{L}$-models for the subsystem without product. Both results are strong completeness theorems, that is, they establish equivalence between derivability from sets of hypotheses (finite or infinite) and semantic entailment from sets of hypotheses on the given class of models. Finally, we prove $\Pi_1^0$-completeness of the algorithmic problem of derivability in the restricted fragment in question.
Mots-clés : Lambek calculus
Keywords: Kleene iteration, algebra of formal languages, algebra of binary relations, complexity of derivability problem.
@article{AL_2020_59_2_a2,
     author = {S. L. Kuznetsov and N. S. Ryzhkova},
     title = {A restricted fragment of the {Lambek} calculus with iteration and intersection operations},
     journal = {Algebra i logika},
     pages = {190--214},
     publisher = {mathdoc},
     volume = {59},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2020_59_2_a2/}
}
TY  - JOUR
AU  - S. L. Kuznetsov
AU  - N. S. Ryzhkova
TI  - A restricted fragment of the Lambek calculus with iteration and intersection operations
JO  - Algebra i logika
PY  - 2020
SP  - 190
EP  - 214
VL  - 59
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2020_59_2_a2/
LA  - ru
ID  - AL_2020_59_2_a2
ER  - 
%0 Journal Article
%A S. L. Kuznetsov
%A N. S. Ryzhkova
%T A restricted fragment of the Lambek calculus with iteration and intersection operations
%J Algebra i logika
%D 2020
%P 190-214
%V 59
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2020_59_2_a2/
%G ru
%F AL_2020_59_2_a2
S. L. Kuznetsov; N. S. Ryzhkova. A restricted fragment of the Lambek calculus with iteration and intersection operations. Algebra i logika, Tome 59 (2020) no. 2, pp. 190-214. http://geodesic.mathdoc.fr/item/AL_2020_59_2_a2/