Primitive normality and primitive connectedness of the class of injective $S$-acts
Algebra i logika, Tome 59 (2020) no. 2, pp. 155-168.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals monoids over which the class of all injective $S$-acts is primitive normal and primitive connected. The following results are proved: the class of all injective acts over any monoid is primitive normal; the class of all injective acts over a right reversible monoid $S$ is primitive connected iff $S$ is a group; if a monoid $S$ is not a group and the class of all injective acts is primitive connected, then a maximal (w.r.t. inclusion) proper subact of ${}_SS$ is not finitely generated.
Keywords: monoid, $S$-act, injective $S$-act, primitive normal theory, primitive connected theory.
@article{AL_2020_59_2_a0,
     author = {E. L. Efremov},
     title = {Primitive normality and primitive connectedness of the class of injective $S$-acts},
     journal = {Algebra i logika},
     pages = {155--168},
     publisher = {mathdoc},
     volume = {59},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2020_59_2_a0/}
}
TY  - JOUR
AU  - E. L. Efremov
TI  - Primitive normality and primitive connectedness of the class of injective $S$-acts
JO  - Algebra i logika
PY  - 2020
SP  - 155
EP  - 168
VL  - 59
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2020_59_2_a0/
LA  - ru
ID  - AL_2020_59_2_a0
ER  - 
%0 Journal Article
%A E. L. Efremov
%T Primitive normality and primitive connectedness of the class of injective $S$-acts
%J Algebra i logika
%D 2020
%P 155-168
%V 59
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2020_59_2_a0/
%G ru
%F AL_2020_59_2_a0
E. L. Efremov. Primitive normality and primitive connectedness of the class of injective $S$-acts. Algebra i logika, Tome 59 (2020) no. 2, pp. 155-168. http://geodesic.mathdoc.fr/item/AL_2020_59_2_a0/

[1] A. A. Stepanova, “Poligony s primitivno normalnymi i additivnymi teoriyami”, Algebra i logika, 47:4 (2008), 491–508 | MR | Zbl

[2] D. O. Ptakhov, “Primitivnaya normalnost i additivnost svobodnykh, proektivnykh i silno ploskikh poligonov”, Algebra i logika, 53:5 (2014), 614–624 | MR

[3] A. A. Stepanova, “Primitivno svyaznye i additivnye teorii poligonov”, Algebra i logika, 45:3 (2006), 300–313 | MR | Zbl

[4] A. A. Stepanova, “Aksiomatiziruemost i polnota klassa in'ektivnykh poligonov nad kommutativnym monoidom i nad gruppoi”, Sib. matem. zh., 56:3 (2015), 650–662 | MR | Zbl

[5] E. L. Efremov, “Polnota i stabilnost klassa in'ektivnykh poligonov”, Algebra i logika, 59:1 (2020), 48–65

[6] E. A. Palyutin, “Primitivno svyaznye teorii”, Algebra i logika, 39:2 (2000), 145–169 | MR | Zbl

[7] M. Kilp, U. Knauer, A. V. Mikhalev, Monoids, acts and categories. With applications to wreath products and graphs, A handbook for students and researchers, de Gruyter Expo. Math., 29, Walter de Gruyter, Berlin, 2000 | MR | Zbl

[8] Yu. L. Ershov, E. A. Palyutin, Matematicheskaya logika, 6-e izd., Fizmatlit, M., 2011 | MR

[9] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970 | MR