Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2020_59_2_a0, author = {E. L. Efremov}, title = {Primitive normality and primitive connectedness of the class of injective $S$-acts}, journal = {Algebra i logika}, pages = {155--168}, publisher = {mathdoc}, volume = {59}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2020_59_2_a0/} }
E. L. Efremov. Primitive normality and primitive connectedness of the class of injective $S$-acts. Algebra i logika, Tome 59 (2020) no. 2, pp. 155-168. http://geodesic.mathdoc.fr/item/AL_2020_59_2_a0/
[1] A. A. Stepanova, “Poligony s primitivno normalnymi i additivnymi teoriyami”, Algebra i logika, 47:4 (2008), 491–508 | MR | Zbl
[2] D. O. Ptakhov, “Primitivnaya normalnost i additivnost svobodnykh, proektivnykh i silno ploskikh poligonov”, Algebra i logika, 53:5 (2014), 614–624 | MR
[3] A. A. Stepanova, “Primitivno svyaznye i additivnye teorii poligonov”, Algebra i logika, 45:3 (2006), 300–313 | MR | Zbl
[4] A. A. Stepanova, “Aksiomatiziruemost i polnota klassa in'ektivnykh poligonov nad kommutativnym monoidom i nad gruppoi”, Sib. matem. zh., 56:3 (2015), 650–662 | MR | Zbl
[5] E. L. Efremov, “Polnota i stabilnost klassa in'ektivnykh poligonov”, Algebra i logika, 59:1 (2020), 48–65
[6] E. A. Palyutin, “Primitivno svyaznye teorii”, Algebra i logika, 39:2 (2000), 145–169 | MR | Zbl
[7] M. Kilp, U. Knauer, A. V. Mikhalev, Monoids, acts and categories. With applications to wreath products and graphs, A handbook for students and researchers, de Gruyter Expo. Math., 29, Walter de Gruyter, Berlin, 2000 | MR | Zbl
[8] Yu. L. Ershov, E. A. Palyutin, Matematicheskaya logika, 6-e izd., Fizmatlit, M., 2011 | MR
[9] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970 | MR