Computable positive and Friedberg numberings in hyperarithmetic
Algebra i logika, Tome 59 (2020) no. 1, pp. 66-83
Voir la notice de l'article provenant de la source Math-Net.Ru
We point out an existence criterion for positive computable total $\Pi^1_1$-numberings of families of subsets of a given $\Pi^1_1$-set. In particular, it is stated that the family of all $\Pi^1_1$-sets has no positive computable total $\Pi^1_1$-numberings. Also we obtain a criterion of existence for computable Friedberg $\Sigma^1_1$-numberings of families of subsets of a given $\Sigma^1_1$-set, the consequence of which is the absence of a computable Friedberg $\Sigma^1_1$-numbering of the family of all $\Sigma^1_1$-sets. Questions concerning the existence of negative computable $\Pi^1_1$- and $\Sigma^1_1$-numberings of the families mentioned are considered.
Keywords:
computable numbering, analytical hierarchy, positive numbering, Friedberg numbering, negative numbering.
Mots-clés : admissible set
Mots-clés : admissible set
@article{AL_2020_59_1_a3,
author = {I. Sh. Kalimullin and V. G. Puzarenko and M. Kh. Faizrakhmanov},
title = {Computable positive and {Friedberg} numberings in hyperarithmetic},
journal = {Algebra i logika},
pages = {66--83},
publisher = {mathdoc},
volume = {59},
number = {1},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2020_59_1_a3/}
}
TY - JOUR AU - I. Sh. Kalimullin AU - V. G. Puzarenko AU - M. Kh. Faizrakhmanov TI - Computable positive and Friedberg numberings in hyperarithmetic JO - Algebra i logika PY - 2020 SP - 66 EP - 83 VL - 59 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AL_2020_59_1_a3/ LA - ru ID - AL_2020_59_1_a3 ER -
I. Sh. Kalimullin; V. G. Puzarenko; M. Kh. Faizrakhmanov. Computable positive and Friedberg numberings in hyperarithmetic. Algebra i logika, Tome 59 (2020) no. 1, pp. 66-83. http://geodesic.mathdoc.fr/item/AL_2020_59_1_a3/