Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2020_59_1_a3, author = {I. Sh. Kalimullin and V. G. Puzarenko and M. Kh. Faizrakhmanov}, title = {Computable positive and {Friedberg} numberings in hyperarithmetic}, journal = {Algebra i logika}, pages = {66--83}, publisher = {mathdoc}, volume = {59}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2020_59_1_a3/} }
TY - JOUR AU - I. Sh. Kalimullin AU - V. G. Puzarenko AU - M. Kh. Faizrakhmanov TI - Computable positive and Friedberg numberings in hyperarithmetic JO - Algebra i logika PY - 2020 SP - 66 EP - 83 VL - 59 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AL_2020_59_1_a3/ LA - ru ID - AL_2020_59_1_a3 ER -
I. Sh. Kalimullin; V. G. Puzarenko; M. Kh. Faizrakhmanov. Computable positive and Friedberg numberings in hyperarithmetic. Algebra i logika, Tome 59 (2020) no. 1, pp. 66-83. http://geodesic.mathdoc.fr/item/AL_2020_59_1_a3/
[1] J. C. Owings, Jr., “The meta-r.e. sets, but not the $\Pi^1_1$ sets, can be enumerated without repetition”, J. Symb. Log., 35:2 (1970), 223–229 | DOI | MR | Zbl
[2] I. Sh. Kalimullin, V. G. Puzarenko, M. Kh. Faizrakhmanov, “Chastichnye pozitivnye predstavleniya v giperarifmetike”, Sib. matem. zh., 60:3 (2019), 599–609 | Zbl
[3] I. Sh. Kalimullin, V. G. Puzarenko, M. Kh. Faizrakhmanov, “Pozitivnye predstavleniya semeistv otnositelno svodimosti po perechislimosti”, Algebra i logika, 57:4 (2018), 492–498 | Zbl
[4] J. Barwise, Admissible sets and structures. An approach to definability theory, Perspec. Math. Log., Springer-Velag, Berlin, 1975 | DOI | MR | Zbl
[5] Kh. Rodzhers, Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972
[6] G. E. Sacks, Higher recursion theory, Perspect. Math. Log., Springer-Verlag, Berlin etc., 1990 | DOI | MR | Zbl
[7] M. V. Dorzhieva, “Eliminatsiya metarekursii iz teoremy Ouinsa”, Vestn. NGU. Ser. matem., mekh., inform., 14:1 (2014), 35–43
[8] M. V. Dorzhieva, “Nerazreshimost elementarnykh teorii polureshetok Rodzhersa analiticheskoi ierarkhii”, Sib. elektron. matem. izv., 13 (2016), 148–153 http://semr.math.nsc.ru/v13/p148-153.pdf
[9] M. V. Dorzhieva, “Odnoznachnaya numeratsiya dlya semeistva vsekh $\Sigma^{1}_{2}$-mnozhestv”, Sib. zh. chist. prikl. matem., 18:2 (2018), 47–52 | Zbl
[10] V. G. Puzarenko, “O razreshimykh vychislimykh $\mathbb{A}$-numeratsiyakh”, Algebra i logika, 41:5 (2002), 568–584 | Zbl
[11] Yu. L. Ershov, Opredelimost i vychislimost, Sibirskaya shkola algebry i logiki, 2-e izd., ispr. i dop., Nauch. kn., Novosibirsk; Ekonomika, M., 2000
[12] Yu. L. Ershov, Teoriya numeratsii, Nauka, M., 1977
[13] I. Sh. Kalimullin, V. G. Puzarenko, “O printsipakh vychislimosti na dopustimykh mnozhestvakh”, Matem. tr., 7:2 (2004), 35–71 | Zbl
[14] I. Sh. Kalimullin, V. G. Puzarenko, M. Kh. Faizrakhmanov, “Pozitivnye predstavleniya semeistv otnositelno $e$-orakulov”, Sib. matem. zh., 59:4 (2018), 823–833 | Zbl
[15] S. S. Goncharov, A. Sorbi, “Obobschenno-vychislimye numeratsii i netrivialnye polureshetki Rodzhersa”, Algebra i logika, 36:6 (1997), 621–641 | Zbl