Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2020_59_1_a2, author = {E. L. Efremov}, title = {Completeness and stability of the class of injective}, journal = {Algebra i logika}, pages = {48--65}, publisher = {mathdoc}, volume = {59}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2020_59_1_a2/} }
E. L. Efremov. Completeness and stability of the class of injective. Algebra i logika, Tome 59 (2020) no. 1, pp. 48-65. http://geodesic.mathdoc.fr/item/AL_2020_59_1_a2/
[1] A. A. Stepanova, “Aksiomatiziruemost i polnota klassa in'ektivnykh poligonov nad kommutativnym monoidom i nad gruppoi”, Sib. matem. zh., 56:3 (2015), 650–662 | Zbl
[2] E. L. Efremov, A. A. Stepanova, “Aksiomatiziruemost klassa slabo in'ektivnykh poligonov”, Sib. matem. zh., 58:4 (2017), 785–795 | Zbl
[3] T. G. Mustafin, “O stabilnostnoi teorii poligonov”, Teoriya modelei i ee primenenie, Tr. in-ta matem. SO AN SSSR, 8, Nauka, Novosibirsk, 1988, 92–107
[4] A. V. Mikhalev, E. V. Ovchinnikova, E. A. Palyutin, A. A. Stepanova, “Teoretiko-modelnye svoistva regulyarnykh poligonov”, Fundament. i prikl. matem., 10:4 (2004), 107–157 | Zbl
[5] V. Gould, A. V. Mikhalev, E. A. Palyutin, A. A. Stepanova, “Teoretiko-modelnye svoistva svobodnykh, proektivnykh i ploskikh $S$-poligonov”, Fundament. i prikl. matem., 14:7 (2008), 63–110
[6] Yu. L. Ershov, E. A. Palyutin, Matematicheskaya logika, 6-e izd., Fizmatlit, M., 2011
[7] E. A. Palyutin, “Spektr i struktura modelei polnykh teorii”, Spravochnaya kniga po matematicheskoi logike, v 4-kh chastyakh, v. 1, Teoriya modelei, ed. Dzh. Barvais, Nauka, M., 1982, 320–387
[8] M. Kilp, U. Knauer, A. V. Mikhalev, Monoids, acts and categories. With applications to wreath products and graphs, A handbook for students and researchers, de Gruyter Expo. Math., 29, Walter de Gruyter, Berlin, 2000 | MR | Zbl