Turing degrees and automorphism groups of substructure lattices
Algebra i logika, Tome 59 (2020) no. 1, pp. 27-47

Voir la notice de l'article provenant de la source Math-Net.Ru

The study of automorphisms of computable and other structures connects computability theory with classical group theory. Among the noncomputable countable structures, computably enumerable structures are one of the most important objects of investigation in computable model theory. Here we focus on the lattice structure of computably enumerable substructures of a given canonical computable structure. In particular, for a Turing degree $\mathbf{d}$, we investigate the groups of $\mathbf{d}$-computable automorphisms of the lattice of $\mathbf{d}$-computably enumerable vector spaces, of the interval Boolean algebra $\mathcal{B}_{\eta}$ of the ordered set of rationals, and of the lattice of $\mathbf{d}$-computably enumerable subalgebras of $\mathcal{B}_{\eta}$. For these groups, we show that Turing reducibility can be used to substitute the group-theoretic embedding. We also prove that the Turing degree of the isomorphism types for these groups is the second Turing jump $\mathbf{d^{\prime \prime }}$ of $\mathbf{d}$.
Mots-clés : automorphism
Keywords: lattice of $\mathbf{d}$-enumerable vector subspaces, groups of $\mathbf{d}$-computable automorphisms, interval Boolean algebra of ordered set of rationals, Turing reducibility, Turing degree, Turing jump.
@article{AL_2020_59_1_a1,
     author = {R. D. Dimitrov and V. S. Harizanov and A. S. Morozov},
     title = {Turing degrees and automorphism groups of substructure lattices},
     journal = {Algebra i logika},
     pages = {27--47},
     publisher = {mathdoc},
     volume = {59},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2020_59_1_a1/}
}
TY  - JOUR
AU  - R. D. Dimitrov
AU  - V. S. Harizanov
AU  - A. S. Morozov
TI  - Turing degrees and automorphism groups of substructure lattices
JO  - Algebra i logika
PY  - 2020
SP  - 27
EP  - 47
VL  - 59
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2020_59_1_a1/
LA  - ru
ID  - AL_2020_59_1_a1
ER  - 
%0 Journal Article
%A R. D. Dimitrov
%A V. S. Harizanov
%A A. S. Morozov
%T Turing degrees and automorphism groups of substructure lattices
%J Algebra i logika
%D 2020
%P 27-47
%V 59
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2020_59_1_a1/
%G ru
%F AL_2020_59_1_a1
R. D. Dimitrov; V. S. Harizanov; A. S. Morozov. Turing degrees and automorphism groups of substructure lattices. Algebra i logika, Tome 59 (2020) no. 1, pp. 27-47. http://geodesic.mathdoc.fr/item/AL_2020_59_1_a1/