Existence of independent quasi-equational bases
Algebra i logika, Tome 58 (2019) no. 6, pp. 769-803
Voir la notice de l'article provenant de la source Math-Net.Ru
We give a sufficient condition for a quasivariety $\mathbf{K}$, weaker than the one found earlier by A. V. Kravchenko, A. M. Nurakunov, and the author, which ensures that $\mathbf{K}$ contains continuum many subquasivarieties with no independent quasi-equational basis relative to $\mathbf{K}$. This condition holds, in particular, for any almost ${f}{f}$-universal quasivariety $\mathbf{K}$.
Keywords:
quasivariety, independent quasi-equational basis.
@article{AL_2019_58_6_a5,
author = {M. V. Schwidefsky},
title = {Existence of independent quasi-equational bases},
journal = {Algebra i logika},
pages = {769--803},
publisher = {mathdoc},
volume = {58},
number = {6},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2019_58_6_a5/}
}
M. V. Schwidefsky. Existence of independent quasi-equational bases. Algebra i logika, Tome 58 (2019) no. 6, pp. 769-803. http://geodesic.mathdoc.fr/item/AL_2019_58_6_a5/