Existence of independent quasi-equational bases
Algebra i logika, Tome 58 (2019) no. 6, pp. 769-803

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a sufficient condition for a quasivariety $\mathbf{K}$, weaker than the one found earlier by A. V. Kravchenko, A. M. Nurakunov, and the author, which ensures that $\mathbf{K}$ contains continuum many subquasivarieties with no independent quasi-equational basis relative to $\mathbf{K}$. This condition holds, in particular, for any almost ${f}{f}$-universal quasivariety $\mathbf{K}$.
Keywords: quasivariety, independent quasi-equational basis.
@article{AL_2019_58_6_a5,
     author = {M. V. Schwidefsky},
     title = {Existence of independent quasi-equational bases},
     journal = {Algebra i logika},
     pages = {769--803},
     publisher = {mathdoc},
     volume = {58},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2019_58_6_a5/}
}
TY  - JOUR
AU  - M. V. Schwidefsky
TI  - Existence of independent quasi-equational bases
JO  - Algebra i logika
PY  - 2019
SP  - 769
EP  - 803
VL  - 58
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2019_58_6_a5/
LA  - ru
ID  - AL_2019_58_6_a5
ER  - 
%0 Journal Article
%A M. V. Schwidefsky
%T Existence of independent quasi-equational bases
%J Algebra i logika
%D 2019
%P 769-803
%V 58
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2019_58_6_a5/
%G ru
%F AL_2019_58_6_a5
M. V. Schwidefsky. Existence of independent quasi-equational bases. Algebra i logika, Tome 58 (2019) no. 6, pp. 769-803. http://geodesic.mathdoc.fr/item/AL_2019_58_6_a5/