Existence of independent quasi-equational bases
Algebra i logika, Tome 58 (2019) no. 6, pp. 769-803.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a sufficient condition for a quasivariety $\mathbf{K}$, weaker than the one found earlier by A. V. Kravchenko, A. M. Nurakunov, and the author, which ensures that $\mathbf{K}$ contains continuum many subquasivarieties with no independent quasi-equational basis relative to $\mathbf{K}$. This condition holds, in particular, for any almost ${f}{f}$-universal quasivariety $\mathbf{K}$.
Keywords: quasivariety, independent quasi-equational basis.
@article{AL_2019_58_6_a5,
     author = {M. V. Schwidefsky},
     title = {Existence of independent quasi-equational bases},
     journal = {Algebra i logika},
     pages = {769--803},
     publisher = {mathdoc},
     volume = {58},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2019_58_6_a5/}
}
TY  - JOUR
AU  - M. V. Schwidefsky
TI  - Existence of independent quasi-equational bases
JO  - Algebra i logika
PY  - 2019
SP  - 769
EP  - 803
VL  - 58
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2019_58_6_a5/
LA  - ru
ID  - AL_2019_58_6_a5
ER  - 
%0 Journal Article
%A M. V. Schwidefsky
%T Existence of independent quasi-equational bases
%J Algebra i logika
%D 2019
%P 769-803
%V 58
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2019_58_6_a5/
%G ru
%F AL_2019_58_6_a5
M. V. Schwidefsky. Existence of independent quasi-equational bases. Algebra i logika, Tome 58 (2019) no. 6, pp. 769-803. http://geodesic.mathdoc.fr/item/AL_2019_58_6_a5/

[1] G. Birkhoff, “Universal algebra”, Proc. First Canadian Math. Congr. (Montreal, 1945), Univ. of Toronto Press, Toronto, 1946, 310–326 | MR | Zbl

[2] A. I. Maltsev, “O nekotorykh pogranichnykh voprosakh algebry i logiki”, Tr. Mezhd. kongr. matem. (Moskva, 1966), Mir, M., 1968, 217–231

[3] V. A. Gorbunov, Algebraicheskaya teoriya kvazimnogoobrazii, Sibirskaya shkola algebry i logiki, Nauch. kniga, Novosibirsk, 1999

[4] V. A. Gorbunov, “Pokrytiya v reshetkakh kvazimnogoobrazii i nezavisimaya aksiomatiziruemost”, Algebra i logika, 16:5 (1977), 507–548 | MR | Zbl

[5] A. V. Kravchenko, A. M. Nurakunov, M. V. Shvidefski, “O stroenii reshetok kvazimnogoobrazii. I. Nezavisimaya aksiomatiziruemost”, Algebra i logika, 57:6 (2018), 684–710 | MR

[6] A. V. Kravchenko, A. M. Nurakunov, M. V. Shvidefski, “O stroenii reshetok kvazimnogoobrazii. II. Nerazreshimye problemy”, Algebra i logika, 58:2 (2019), 179–199 | Zbl

[7] M. E. Adams, W. Dziobiak, “${\mathcal Q}$-universal quasivarieties of algebras”, Proc. Am. Math. Soc., 120:4 (1994), 1053–1059 | MR | Zbl

[8] V. Koubek, J. Sichler, “Almost $ff$-universality implies $Q$-universality”, Appl. Categor. Struct., 17:5 (2009), 419–434 | DOI | MR | Zbl

[9] A. V. Kravchenko, A. M. Nurakunov, M. V. Schwidefsky, “On quasi-equational bases for differential groupoids and unary algebras”, Sib. elektron. matem. izv., 14 (2017), 1330–1337 http://semr.math.nsc.ru/v14/p1330-1337.pdf | MR | Zbl

[10] A. Basheyeva, A. Nurakunov, M. Schwidefsky, A. Zamojska-Dzienio, “Lattices of subklasses. III”, Sib. elektron. matem. izv., 14 (2017), 252–263 http://semr.math.nsc.ru/v14/p252-263.pdf | MR | Zbl

[11] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970 | MR

[12] V. K. Kartashov, “Kvazimnogoobraziya unarov s konechnym chislom tsiklov”, Algebra i logika, 19:2 (1980), 173–193 | MR

[13] V. Koubek, J. Sichler, “On synchronized relatively full embeddings and $Q$-universality”, Cah. Topol. Géom. Différ. Catég., 49:4 (2008), 289–306 | MR | Zbl

[14] W. Dziobiak, “On lattice identities satisfied in subquasivariety lattices of varieties of modular lattices”, Algebra Univers., 22:2/3 (1986), 205–214 | DOI | MR | Zbl

[15] M. V. Shvidefski, “O slozhnosti reshetok kvazimnogoobrazii”, Algebra i logika, 54:3 (2015), 381–398 | MR

[16] A. Romanowska, B. Roszkowska, “On some groupoid modes”, Demonstr. Math., 20:1/2 (1987), 277–290 | MR | Zbl

[17] A. Romanowska, J. D. H. Smith, Modes, World Scientific, Singapore, 2002 | MR | Zbl

[18] M. V. Schwidefsky, A. Zamojska-Dzienio, “Lattices of subclasses. II”, Int. J. Algebra Comput., 24:8 (2014), 1099–1126 | DOI | MR | Zbl

[19] H. Herrlich, Topologische Reflexionen und Coreflexionen, Lect. Notes Math., 78, Springer Verlag, Berlin–Heidelberg–New York, 1968 | DOI | MR | Zbl

[20] A. Pultr, V. Trnková, “Combinatorial, algebraic and topological representations of groups”, Semigroups and categories, North-Holland Math. Lib., 22, North-Holland Publ. Co., Amsterdam–New York–Oxford, 1980 | MR | Zbl

[21] M. Demlová, V. Koubek, “Weak $\mathrm{alg}$-universality and $Q$-universality of semigroup quasivarieties”, Commentat. Math. Univ. Carol., 46:2 (2005), 257–279 | MR | Zbl

[22] V. Koubek, J. Sichler, “Universality of small lattice varieties”, Proc. Am. Math. Soc., 91:1 (1984), 19–24 | DOI | MR | Zbl

[23] V. Koubek, J. Sichler, “On almost universal varieties of modular lattices”, Algebra Univers., 45:2/3 (2001), 191–210 | MR | Zbl

[24] V. Koubek, J. Sichler, “Almost ${f}{f}$-universal and $Q$-universal varieties of modular $0$-lattices”, Colloq. Math., 101:2 (2004), 161–182 | DOI | MR | Zbl

[25] V. Koubek, J. Sichler, “Finitely generated almost universal varieties of $0$-lattices”, Commentat. Math. Univ. Carol., 46:2 (2005), 301–325 | MR | Zbl

[26] A. G. Pinus, E. N. Poroshenko, S. V. Sudoplatov (red.), Erlagolskaya tetrad. Izbrannye otkrytye voprosy po algebre i teorii modelei, postavlennye uchastnikami Erlagolskikh shkol-konferentsii, Izd-vo NGTU, Novosibirsk, 2018

[27] A. I. Maltsev, “Universalno aksiomatiziruemye podklassy lokalno konechnykh klassov modelei”, Sib. matem. zh., 8:5 (1967), 1005–1014 | Zbl

[28] V. Yu. Popov, “O nezavisimo razbivaemykh sistemakh kvazitozhdestv”, Izv. UrGU, ser. Matem., mekh. Kompyuter. n., 2005, no. 36, 139–144 | Zbl