Classifications of definable subsets
Algebra i logika, Tome 58 (2019) no. 5, pp. 574-608
Voir la notice de l'article provenant de la source Math-Net.Ru
Given a structure $\mathcal{M}$ over $\omega$ and a syntactic complexity class $\mathfrak{C}$, we say that a subset $A$ is $\mathfrak{C}$-definable in $\mathcal{M}$ if there exists a $\mathfrak{C}$-formula $\Theta(x)$ in the language of $\mathcal{M}$ such that for all $x\in\omega$, we have $x \in A$ iff $\Theta(x)$ is true in the structure. S. S. Goncharov and N. T. Kogabaev [Vestnik NGU, Mat., Mekh., Inf., 8, No. 4, 23-32 (2008)] generalized an idea proposed by Friedberg [J. Symb. Log., 23, No. 3, 309-316 (1958)], introducing the notion of a $\mathfrak{C}$-classification of $\mathcal{M}$: a computable list of $\mathfrak{C}$-formulas such that every $\mathfrak{C}$-definable subset is defined by a unique formula in the list. We study the connections among $\Sigma_1^0$-, $d$-$\Sigma_1^0$-, and $\Sigma_2^0$-classifications in the context of two families of structures, unbounded computable equivalence structures and unbounded computable injection structures. It is stated that every such injection structure has a $\Sigma_1^0$-classification, a $d$-$\Sigma_1^0$-classification, and a $\Sigma_2^0$-classification. In equivalence structures, on the other hand, we find a richer variety of possibilities.
Keywords:
$\Sigma_1^0$-classification, $d$-$\Sigma_1^0$-classification, $\Sigma_2^0$-classification, unbounded computable equivalence structure, unbounded computable injection structure.
@article{AL_2019_58_5_a1,
author = {S. Boyadzhiyska and K. Lange and A. Raz and R. Scanlon and J. Wallbaum and X. Zhang},
title = {Classifications of definable subsets},
journal = {Algebra i logika},
pages = {574--608},
publisher = {mathdoc},
volume = {58},
number = {5},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2019_58_5_a1/}
}
TY - JOUR AU - S. Boyadzhiyska AU - K. Lange AU - A. Raz AU - R. Scanlon AU - J. Wallbaum AU - X. Zhang TI - Classifications of definable subsets JO - Algebra i logika PY - 2019 SP - 574 EP - 608 VL - 58 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AL_2019_58_5_a1/ LA - ru ID - AL_2019_58_5_a1 ER -
S. Boyadzhiyska; K. Lange; A. Raz; R. Scanlon; J. Wallbaum; X. Zhang. Classifications of definable subsets. Algebra i logika, Tome 58 (2019) no. 5, pp. 574-608. http://geodesic.mathdoc.fr/item/AL_2019_58_5_a1/