Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2019_58_5_a1, author = {S. Boyadzhiyska and K. Lange and A. Raz and R. Scanlon and J. Wallbaum and X. Zhang}, title = {Classifications of definable subsets}, journal = {Algebra i logika}, pages = {574--608}, publisher = {mathdoc}, volume = {58}, number = {5}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2019_58_5_a1/} }
TY - JOUR AU - S. Boyadzhiyska AU - K. Lange AU - A. Raz AU - R. Scanlon AU - J. Wallbaum AU - X. Zhang TI - Classifications of definable subsets JO - Algebra i logika PY - 2019 SP - 574 EP - 608 VL - 58 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AL_2019_58_5_a1/ LA - ru ID - AL_2019_58_5_a1 ER -
S. Boyadzhiyska; K. Lange; A. Raz; R. Scanlon; J. Wallbaum; X. Zhang. Classifications of definable subsets. Algebra i logika, Tome 58 (2019) no. 5, pp. 574-608. http://geodesic.mathdoc.fr/item/AL_2019_58_5_a1/
[1] R. M. Friedberg, “Three theorems on recursive enumeration. I: Decomposition. II: Maximal set. III: Enumeration without duplication”, J. Symb. Log., 23:3 (1958), 309–316 | DOI | MR
[2] S. S. Goncharov, S. Lempp, D. R. Solomon, “Fridbergovskie numeratsii semeistv $n$-vychislimo perechislimykh mnozhestv”, Algebra i logika, 41:2 (2002), 143–154 | MR | Zbl
[3] S. S. Goncharov, N. T. Kogabaev, “O $\Sigma_1^0$-klassifikatsii otnoshenii na vychislimykh strukturakh”, Vestn. NGU. Ser. Matem., mekh., inform., 8:4 (2008), 23–32 | Zbl
[4] W. Calvert, D. Cenzer, V. Harizanov, A. Morozov, “Effective categoricity of equivalence structures”, Ann. Pure Appl. Logic, 141:1/2 (2006), 61–78 | DOI | MR | Zbl
[5] D. Tsenzer, V. Kharizanov, Dzh. B. Remmel, “Teoretiko vychislitelnye svoistva struktur s vlozheniem”, Algebra i logika, 53:1 (2014), 60–108 | MR
[6] A. M. Kach, D. Turetsky, “$\Delta_2^0$-categoricity of equivalence structures”, N. Z. J. Math., 39 (2009), 143–149 | MR | Zbl
[7] R. Downey, A. G. Melnikov, K. M. Ng, “On $\Delta_2^0$-categoricity of equivalence relations”, Annals Pure Appl. Logic, 166:9 (2015), 851–880 | DOI | MR | Zbl
[8] D. Cenzer, V. Harizanov, J. B. Remmel, “$\Sigma^0_1$ and $\Pi^0_1$ equivalence structures”, Mathematical theory and computational practice, 5th conf. comput. Europe, CiE 2009 (Heidelberg, Germany, July 19–24, 2009), Lect. Notes Comput. Sci., 5635, eds. K. Ambos-Spies et al., Springer-Verlag, Berlin, 2009, 99–108 | DOI | MR | Zbl
[9] D. Kuske, J. Liu, M. Lohrey, “The isomorphism problem on classes of automatic structures with transitive relations”, Trans. Am. Math. Soc., 365:10 (2013), 5103–5151 | DOI | MR | Zbl
[10] A. Montalbán, “Computability theoretic classifications for classes of structures”, Proc. Int. Congress Math., ICM 2014 (Seoul, Korea, August 13-21, 2014), v. II, Invited lectures, eds. S. Y. Jang et al., KM Kyung Moon Sa, Seoul, 2014, 79–101 | MR | Zbl
[11] S. S. Goncharov, Dzh. Nait, “Vychislimye strukturnye i antistrukturnye teoremy”, Algebra i logika, 41:6 (2002), 639–681 | MR | Zbl
[12] R. G. Downey, A. G. Melnikov, K. M. Ng, “A Friedberg enumeration of equivalence structures”, J. Math. Log., 17:2 (2017), 1750008, 28 pp. | DOI | MR | Zbl
[13] K. Lange, R. Miller, R. Steiner, “Classifications of computable structures”, Notre Dame J. Formal Logic, 59:1 (2018), 35–59 | DOI | MR | Zbl