Prime and homogeneous rings and algebras
Algebra i logika, Tome 58 (2019) no. 4, pp. 512-527.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal M$ be a structure of a signature $\Sigma$. For any ordered tuple $\overline{a}=(a_1,\ldots,a_n)$ of elements of $\mathcal M$, $\mathrm{ tp}^{\mathcal M}(\overline{a})$ denotes the set of formulas $\theta(x_1,\ldots,x_n)$ of a first-order language over $\Sigma$ with free variables $x_1,\ldots,x_n$ such that $\mathcal M\models\theta(a_1,\ldots,a_n)$. A structure $\mathcal M$ is said to be strongly $\omega$-homogeneous if, for any finite ordered tuples $\overline{a}$ and $\overline{b}$ of elements of $\mathcal M$, the coincidence of $\mathrm{ tp}^{\mathcal M}(\overline{a})$ and $\mathrm{ tp}^{\mathcal M}(\overline{b})$ implies that these tuples are mapped into each other (componentwise) by some automorphism of the structure $\mathcal M$. A structure $\mathcal M$ is said to be prime in its theory if it is elementarily embedded in every structure of the theory $\mathrm{ Th}\,(\mathcal M)$. It is proved that the integral group rings of finitely generated relatively free orderable groups are prime in their theories, and that this property is shared by the following finitely generated countable structures: free nilpotent associative rings and algebras, free nilpotent rings and Lie algebras. It is also shown that finitely generated non-Abelian free nilpotent associative algebras and finitely generated non-Abelian free nilpotent Lie algebras over uncountable fields are strongly $\omega$-homogeneous.
Keywords: homogeneous structure, structure prime in its theory, relatively free structure, orderable group, group ring, nilpotent algebra, nilpotent ring, associative ring, Lie ring.
@article{AL_2019_58_4_a6,
     author = {E. I. Timoshenko},
     title = {Prime and homogeneous rings and algebras},
     journal = {Algebra i logika},
     pages = {512--527},
     publisher = {mathdoc},
     volume = {58},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2019_58_4_a6/}
}
TY  - JOUR
AU  - E. I. Timoshenko
TI  - Prime and homogeneous rings and algebras
JO  - Algebra i logika
PY  - 2019
SP  - 512
EP  - 527
VL  - 58
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2019_58_4_a6/
LA  - ru
ID  - AL_2019_58_4_a6
ER  - 
%0 Journal Article
%A E. I. Timoshenko
%T Prime and homogeneous rings and algebras
%J Algebra i logika
%D 2019
%P 512-527
%V 58
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2019_58_4_a6/
%G ru
%F AL_2019_58_4_a6
E. I. Timoshenko. Prime and homogeneous rings and algebras. Algebra i logika, Tome 58 (2019) no. 4, pp. 512-527. http://geodesic.mathdoc.fr/item/AL_2019_58_4_a6/

[1] C. Perin, R. Sklinos, “Homogenity in the free groups”, Duke Math. J., 161:13 (2012), 2635–2668 | DOI | MR | Zbl

[2] D. Marker, Model theory: an introduction, Grad. Texts Math., 217, Springer-Verlag, New York etc., 2002 | MR | Zbl

[3] A. Nies, “Aspects of free groups”, J. Algebra, 263:1 (2003), 119–125 | DOI | MR | Zbl

[4] A. Ould Houcine, “Homogeneity and prime models in torsion-free hyperbolic groups”, Confluentes Math., 3:1 (2011), 121–155 | DOI | MR | Zbl

[5] W. Hodges, Model theory, Encycl. Math. Appl., 42, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[6] F. Oger, G. Sabbagh, “Quasi-finitely axiomatizable nilpotent groups”, J. Group Theory, 9:1 (2006), 95–106 | MR | Zbl

[7] O. Kharlampovich, A. Myasnikov, “Definable sets in a hyperbolic group”, Int. J. Algebra and Comput., 23:1 (2013), 91–110 | DOI | MR | Zbl

[8] Ch. K. Gupta, E. I. Timoshenko, “O formulnosti i algebraichnosti mnozhestv annuliruyuschikh i porozhdayuschikh naborov elementov dlya nekotorykh otnositelno svobodnykh razreshimykh grupp”, Sib. matem. zh., 47:4 (2006), 769–779 | MR | Zbl

[9] A. I. Maltsev, “Ob uravnenii $zxyx^{-1}y^{-1}z^{-1}=aba^{-1}b^{-1}$ v svobodnoi gruppe”, Algebra i logika, 1:5 (1962), 45–50 | Zbl

[10] Erlagolskaya tetrad. Izbrannye otkrytye voprosy po algebre i teorii modelei, postavlennye uchastnikami Erlagolskikh shkol-konferentsii, Izd-vo NGTU, Novosibirsk, 2018

[11] A. E. Zalesskii, A. V. Mikhalev, “Gruppovye koltsa”, Itogi nauki i tekhn., Ser. Sovrem. probl. mat., 2, VINITI, M., 1973, 5–118

[12] A. W. Mostowski, “On automorphisms of relatively free groups”, Fund. Math., 50 (1962), 403–411 | DOI | MR | Zbl

[13] G. Zhitomirski, “Types of points and algebras”, Int. J. Algebra Comput., 28:8 (2018), 1717–1730 | DOI | MR | Zbl