A Levi class generated by a quasivariety of nilpotent groups
Algebra i logika, Tome 58 (2019) no. 4, pp. 486-499.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $L(M)$ be a class of all groups $G$ in which the normal closure of any element belongs to $M$; $qM$ is a quasivariety generated by a class $M$. We consider a quasivariety $qH_2$ generated by a relatively free group in a class of nilpotent groups of class at most $2$ with commutator subgroup of exponent $2$. It is proved that the Levi class $L(qH_2)$ generated by the quasivariety $qH_2$ is contained in the variety of nilpotent groups of class at most $3$.
Mots-clés : group
Keywords: nilpotent group, variety, quasivariety, Levi class.
@article{AL_2019_58_4_a4,
     author = {V. V. Lodeishchikova},
     title = {A {Levi} class generated by a quasivariety of nilpotent groups},
     journal = {Algebra i logika},
     pages = {486--499},
     publisher = {mathdoc},
     volume = {58},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2019_58_4_a4/}
}
TY  - JOUR
AU  - V. V. Lodeishchikova
TI  - A Levi class generated by a quasivariety of nilpotent groups
JO  - Algebra i logika
PY  - 2019
SP  - 486
EP  - 499
VL  - 58
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2019_58_4_a4/
LA  - ru
ID  - AL_2019_58_4_a4
ER  - 
%0 Journal Article
%A V. V. Lodeishchikova
%T A Levi class generated by a quasivariety of nilpotent groups
%J Algebra i logika
%D 2019
%P 486-499
%V 58
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2019_58_4_a4/
%G ru
%F AL_2019_58_4_a4
V. V. Lodeishchikova. A Levi class generated by a quasivariety of nilpotent groups. Algebra i logika, Tome 58 (2019) no. 4, pp. 486-499. http://geodesic.mathdoc.fr/item/AL_2019_58_4_a4/

[1] L. C. Kappe, “On Levi-formations”, Arch. Math., 23:6 (1972), 561–572 | DOI | MR | Zbl

[2] F. W. Levi, “Groups in which the commutator operation satisfies certain algebraic conditions”, J. Indian Math. Soc., New Ser., 6 (1942), 87–97 | MR | Zbl

[3] R.F. Morse, “Levi-properties generated by varieties”, The mathematical legacy of Wilhelm Magnus. Groups, geometry and special functions, Conf. on the legacy of Wilhelm Magnus (May 1–3, 1992, Polytechnic Univ. Brooklyn, NY, USA), Contemp. Math., 169, eds. W. Abikoff et al., Am. Math. Soc., Providence, RI, 1994, 467–474 | DOI | MR | Zbl

[4] A. I. Budkin, “Kvazimnogoobraziya Levi”, Sib. matem. zh., 40:2 (1999), 266–270 | MR | Zbl

[5] A. I. Budkin, L. V. Taranina, “O kvazimnogoobraziyakh Levi, porozhdennykh nilpotentnymi gruppami”, Sib. matem. zh., 41:2 (2000), 270–277 | MR | Zbl

[6] A. I. Budkin, “O klassakh Levi, porozhdennykh nilpotentnymi gruppami”, Algebra i logika, 39:6 (2000), 635–647 | MR | Zbl

[7] V. V. Lodeischikova, “O kvazimnogoobraziyakh Levi, porozhdennykh nilpotentnymi gruppami”, Izv. Alt. gos. un-ta, 2009, no. 1 (61), 26–29

[8] V. V. Lodeischikova, “O klassakh Levi, porozhdennykh nilpotentnymi gruppami”, Sib. matem. zh., 51:6 (2010), 1359–1366 | MR

[9] V. V. Lodeischikova, “O kvazimnogoobraziyakh Levi eksponenty $p^s$”, Algebra i logika, 50:1 (2011), 26–41 | MR

[10] S. A. Shakhova, “Ob aksiomaticheskom range kvazimnogoobraziya $\mathcal{M}^{p^2}$”, Izv. Alt. gos. un-ta, 2015, no. 1/2(85), 179–182

[11] V. V. Lodeischikova, “Ob odnom kvazimnogoobrazii Levi eksponenty 8”, Izv. Alt. gos. un-ta, 2010, no. 1/2(65), 42–45

[12] V. V. Lodeischikova, “O klasse Levi, porozhdennom pochti abelevym kvazimnogoobraziem nilpotentnykh grupp”, Izv. Alt. gos. un-ta, 2016, no. 1 (89), 148–151

[13] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1977 | MR

[14] Kh. Neiman, Mnogoobraziya grupp, Mir, M., 1969

[15] A. I. Budkin, Kvazimnogoobraziya grupp, Izd-vo Alt. gos. un-ta, Barnaul, 2002

[16] V. A. Gorbunov, Algebraicheskaya teoriya kvazimnogoobrazii, Sibirskaya shkola algebry i logiki, Nauch. kniga, Novosibirsk, 1999

[17] L. C. Kappe, W. P. Kappe, “On three-Engel groups”, Bull. Aust. Math. Soc., 7:3 (1972), 391–405 | DOI | MR | Zbl