A Levi class generated by a quasivariety of nilpotent groups
Algebra i logika, Tome 58 (2019) no. 4, pp. 486-499

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $L(M)$ be a class of all groups $G$ in which the normal closure of any element belongs to $M$; $qM$ is a quasivariety generated by a class $M$. We consider a quasivariety $qH_2$ generated by a relatively free group in a class of nilpotent groups of class at most $2$ with commutator subgroup of exponent $2$. It is proved that the Levi class $L(qH_2)$ generated by the quasivariety $qH_2$ is contained in the variety of nilpotent groups of class at most $3$.
Mots-clés : group
Keywords: nilpotent group, variety, quasivariety, Levi class.
@article{AL_2019_58_4_a4,
     author = {V. V. Lodeishchikova},
     title = {A {Levi} class generated by a quasivariety of nilpotent groups},
     journal = {Algebra i logika},
     pages = {486--499},
     publisher = {mathdoc},
     volume = {58},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2019_58_4_a4/}
}
TY  - JOUR
AU  - V. V. Lodeishchikova
TI  - A Levi class generated by a quasivariety of nilpotent groups
JO  - Algebra i logika
PY  - 2019
SP  - 486
EP  - 499
VL  - 58
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2019_58_4_a4/
LA  - ru
ID  - AL_2019_58_4_a4
ER  - 
%0 Journal Article
%A V. V. Lodeishchikova
%T A Levi class generated by a quasivariety of nilpotent groups
%J Algebra i logika
%D 2019
%P 486-499
%V 58
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2019_58_4_a4/
%G ru
%F AL_2019_58_4_a4
V. V. Lodeishchikova. A Levi class generated by a quasivariety of nilpotent groups. Algebra i logika, Tome 58 (2019) no. 4, pp. 486-499. http://geodesic.mathdoc.fr/item/AL_2019_58_4_a4/