Associators and commutators in alternative algebras
Algebra i logika, Tome 58 (2019) no. 4, pp. 479-485.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that in a unital alternative algebra $A$ of characteristic $\neq 2$, the associator $(a,b,c)$ and the Kleinfeld function $f(a,b,c,d)$ never assume the value $1$ for any elements $a,b,c,d\in A$. Moreover, if $A$ is nonassociative, then no commutator $[a,b]$ can be equal to $1$. As a consequence, there do not exist algebraically closed alternative algebras. The restriction on the characteristic is essential, as exemplified by the Cayley–Dickson algebra over a field of characteristic $2$.
Keywords: alternative algebra, associator, commutator, Kleinfeld function.
@article{AL_2019_58_4_a3,
     author = {E. Kleinfeld and I. P. Shestakov},
     title = {Associators and commutators in alternative algebras},
     journal = {Algebra i logika},
     pages = {479--485},
     publisher = {mathdoc},
     volume = {58},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2019_58_4_a3/}
}
TY  - JOUR
AU  - E. Kleinfeld
AU  - I. P. Shestakov
TI  - Associators and commutators in alternative algebras
JO  - Algebra i logika
PY  - 2019
SP  - 479
EP  - 485
VL  - 58
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2019_58_4_a3/
LA  - ru
ID  - AL_2019_58_4_a3
ER  - 
%0 Journal Article
%A E. Kleinfeld
%A I. P. Shestakov
%T Associators and commutators in alternative algebras
%J Algebra i logika
%D 2019
%P 479-485
%V 58
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2019_58_4_a3/
%G ru
%F AL_2019_58_4_a3
E. Kleinfeld; I. P. Shestakov. Associators and commutators in alternative algebras. Algebra i logika, Tome 58 (2019) no. 4, pp. 479-485. http://geodesic.mathdoc.fr/item/AL_2019_58_4_a3/

[1] E. Kleinfeld, “Simple alternative rings”, Ann. Math. (2), 58:3, 544–547 | DOI | MR | Zbl

[2] K. A. Zhevlakov, A. M. Slinko, I. P. Shestakov, A. I. Shirshov, Koltsa, blizkie k assotsiativnym, Nauka, M., 1978 | MR

[3] I. P. Shestakov, “Tsentry alternativnykh algebr”, Algebra i logika, 15:3 (1976), 343—362 | MR

[4] L. Makar-Limanov, “Algebraically closed skew fields”, J. Algebra, 93:1 (1985), 117–135 | DOI | MR | Zbl