Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2019_58_4_a0, author = {W. Guo and D. V. Lytkina and V. D. Mazurov and D. O. Revin}, title = {Integral {Cayley} graphs}, journal = {Algebra i logika}, pages = {445--457}, publisher = {mathdoc}, volume = {58}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2019_58_4_a0/} }
W. Guo; D. V. Lytkina; V. D. Mazurov; D. O. Revin. Integral Cayley graphs. Algebra i logika, Tome 58 (2019) no. 4, pp. 445-457. http://geodesic.mathdoc.fr/item/AL_2019_58_4_a0/
[1] Unsolved problems in group theory, The Kourovka notebook, 19, Sobolev Institute of Mathematics, Novosibirsk, 2018 http://www.math.nsc.ru/ãlglog/19tkt.pdf
[2] E. V. Konstantinova, D. V. Lytkina, “On integral Cayley graphs of finite groups”, Alg. Colloq. (to appear)
[3] P. Diaconis, M. Shahshahani, “Generating a random permutation with random transpositions”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 57 (1981), 159–179 | DOI | MR | Zbl
[4] M. R. Murty, “Ramanujan graphs”, J. Ramanujan Math. Soc., 18:1 (2003), 33–52 | MR | Zbl
[5] R. Krakovski, B. Mohar, “Spectrum of Cayley graphs on the symmetric group generated by transpositions”, Linear Algebra Appl., 437:3 (2012), 1033–1039 | DOI | MR | Zbl
[6] G. Chapuy, V. Féray, A note on a Cayley graph of $Sym_n$, arXiv: 1202.4976v2 [math.CO]
[7] I. M. Isaacs, Character theory of finite groups, Corr. repr. of the 1976 orig., AMS Chelsea Publ., Providence, RI, 2006 | MR | Zbl