Integral Cayley graphs
Algebra i logika, Tome 58 (2019) no. 4, pp. 445-457.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a group and $S\subseteq G$ a subset such that $S=S^{-1}$, where $S^{-1}=\{s^{-1}\mid s\in S\}$. Then the Cayley graph $\mathrm{ Cay}(G,S)$ is an undirected graph $\Gamma$ with vertex set $V(\Gamma)=G$ and edge set $E(\Gamma)=\{(g,gs)\mid g\in G, s\in S\}$. For a normal subset $S$ of a finite group $G$ such that $s\in S\Rightarrow s^k\in S$ for every $k\in \mathbb{Z}$ which is coprime to the order of $s$, we prove that all eigenvalues of the adjacency matrix of $\mathrm{ Cay}(G,S)$ are integers. Using this fact, we give affirmative answers to Questions $19.50\mathrm{ (a)}$ and $19.50\mathrm{ (b)}$ in the Kourovka Notebook.
Keywords: Cayley graph, adjacency matrix of graph, spectrum of graph, integral graph, complex group algebra, character of group.
@article{AL_2019_58_4_a0,
     author = {W. Guo and D. V. Lytkina and V. D. Mazurov and D. O. Revin},
     title = {Integral {Cayley} graphs},
     journal = {Algebra i logika},
     pages = {445--457},
     publisher = {mathdoc},
     volume = {58},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2019_58_4_a0/}
}
TY  - JOUR
AU  - W. Guo
AU  - D. V. Lytkina
AU  - V. D. Mazurov
AU  - D. O. Revin
TI  - Integral Cayley graphs
JO  - Algebra i logika
PY  - 2019
SP  - 445
EP  - 457
VL  - 58
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2019_58_4_a0/
LA  - ru
ID  - AL_2019_58_4_a0
ER  - 
%0 Journal Article
%A W. Guo
%A D. V. Lytkina
%A V. D. Mazurov
%A D. O. Revin
%T Integral Cayley graphs
%J Algebra i logika
%D 2019
%P 445-457
%V 58
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2019_58_4_a0/
%G ru
%F AL_2019_58_4_a0
W. Guo; D. V. Lytkina; V. D. Mazurov; D. O. Revin. Integral Cayley graphs. Algebra i logika, Tome 58 (2019) no. 4, pp. 445-457. http://geodesic.mathdoc.fr/item/AL_2019_58_4_a0/

[1] Unsolved problems in group theory, The Kourovka notebook, 19, Sobolev Institute of Mathematics, Novosibirsk, 2018 http://www.math.nsc.ru/ãlglog/19tkt.pdf

[2] E. V. Konstantinova, D. V. Lytkina, “On integral Cayley graphs of finite groups”, Alg. Colloq. (to appear)

[3] P. Diaconis, M. Shahshahani, “Generating a random permutation with random transpositions”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 57 (1981), 159–179 | DOI | MR | Zbl

[4] M. R. Murty, “Ramanujan graphs”, J. Ramanujan Math. Soc., 18:1 (2003), 33–52 | MR | Zbl

[5] R. Krakovski, B. Mohar, “Spectrum of Cayley graphs on the symmetric group generated by transpositions”, Linear Algebra Appl., 437:3 (2012), 1033–1039 | DOI | MR | Zbl

[6] G. Chapuy, V. Féray, A note on a Cayley graph of $Sym_n$, arXiv: 1202.4976v2 [math.CO]

[7] I. M. Isaacs, Character theory of finite groups, Corr. repr. of the 1976 orig., AMS Chelsea Publ., Providence, RI, 2006 | MR | Zbl