Groups with finite Engel element
Algebra i logika, Tome 58 (2019) no. 3, pp. 376-396

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that in an arbitrary group, the normal closure of a finite Engel element with Artinian centralizer is a locally nilpotent Cěrnikov subgroup, thereby generalizing the Baer–Suzuki theorem, Blackburn's and Shunkov's theorems.
Keywords: Engel element, finite element, locally nilpotent radical, Artinian group, Cěrnikov group, $D$-subgroup.
@article{AL_2019_58_3_a6,
     author = {A. I. Sozutov},
     title = {Groups with finite {Engel} element},
     journal = {Algebra i logika},
     pages = {376--396},
     publisher = {mathdoc},
     volume = {58},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2019_58_3_a6/}
}
TY  - JOUR
AU  - A. I. Sozutov
TI  - Groups with finite Engel element
JO  - Algebra i logika
PY  - 2019
SP  - 376
EP  - 396
VL  - 58
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2019_58_3_a6/
LA  - ru
ID  - AL_2019_58_3_a6
ER  - 
%0 Journal Article
%A A. I. Sozutov
%T Groups with finite Engel element
%J Algebra i logika
%D 2019
%P 376-396
%V 58
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2019_58_3_a6/
%G ru
%F AL_2019_58_3_a6
A. I. Sozutov. Groups with finite Engel element. Algebra i logika, Tome 58 (2019) no. 3, pp. 376-396. http://geodesic.mathdoc.fr/item/AL_2019_58_3_a6/