Groups with finite Engel element
Algebra i logika, Tome 58 (2019) no. 3, pp. 376-396.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that in an arbitrary group, the normal closure of a finite Engel element with Artinian centralizer is a locally nilpotent Cěrnikov subgroup, thereby generalizing the Baer–Suzuki theorem, Blackburn's and Shunkov's theorems.
Keywords: Engel element, finite element, locally nilpotent radical, Artinian group, $D$-subgroup.
Mots-clés : Cěrnikov group
@article{AL_2019_58_3_a6,
     author = {A. I. Sozutov},
     title = {Groups with finite {Engel} element},
     journal = {Algebra i logika},
     pages = {376--396},
     publisher = {mathdoc},
     volume = {58},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2019_58_3_a6/}
}
TY  - JOUR
AU  - A. I. Sozutov
TI  - Groups with finite Engel element
JO  - Algebra i logika
PY  - 2019
SP  - 376
EP  - 396
VL  - 58
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2019_58_3_a6/
LA  - ru
ID  - AL_2019_58_3_a6
ER  - 
%0 Journal Article
%A A. I. Sozutov
%T Groups with finite Engel element
%J Algebra i logika
%D 2019
%P 376-396
%V 58
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2019_58_3_a6/
%G ru
%F AL_2019_58_3_a6
A. I. Sozutov. Groups with finite Engel element. Algebra i logika, Tome 58 (2019) no. 3, pp. 376-396. http://geodesic.mathdoc.fr/item/AL_2019_58_3_a6/

[1] A. G. Kurosh, Teoriya grupp, Nauka, M., 1967 | MR

[2] A. I. Sozutov, “O nil-radikalakh v gruppakh”, Algebra i logika, 30:1 (1991), 102–105 | MR | Zbl

[3] V. D. Mazurov, A. Yu. Olshanskii, A. I. Sozutov, “O beskonechnykh gruppakh konechnogo perioda”, Algebra i logika, 54:2 (2015), 243–251 | MR | Zbl

[4] T. M. Gagen, “Nekotorye voprosy teorii konechnykh grupp”, K teorii konechnykh grupp, Matematika. Novoe v zarubezhnoi nauke, 16, Mir, M., 1979, 13–97

[5] D. Gorenstein, Konechnye prostye gruppy. Vvedenie v ikh klassifikatsiyu, Mir, M., 1985

[6] A. I. Sozutov, “Ob odnom obobschenii teoremy Bera–Sudzuki”, Sib. matem. zh., 41:3 (2000), 674–675 | MR | Zbl

[7] V. P. Shunkov, “Ob odnom klasse $p$-grupp”, Algebra i logika, 9:4 (1970), 484–496 | MR

[8] V. P. Shunkov, Mp-gruppy, Nauka, M., 1990 | MR

[9] N. Blackburn, “Some remarks on Cernikov $p$-groups”, Ill. J. Math., 6 (1962), 421–433 | DOI | MR | Zbl

[10] A. Yu. Olshanskii, Geometriya opredelyayuschikh sootnoshenii v gruppakh, Nauka, M., 1989

[11] A. I. Sozutov, “O gruppakh s konechnym engelevym elementom”, Tez. dokl. Mezhdunar. algeb. konf., posvyasch. 110-letiyu so dnya rozhdeniya prof. A. G. Kurosha, Izd-vo MGU, M., 2018, 179–180

[12] A. S. Mamontov, “Analog teoremy Bera–Suzuki dlya beskonechnykh grupp”, Sib. matem. zh., 45:2 (2004), 394–398 | MR | Zbl

[13] B. Li, D. V. Lytkina, “O silovskikh $2$-podgruppakh periodicheskikh grupp, nasyschennykh konechnymi prostymi gruppami”, Sib. matem. zh., 57:6 (2016), 1313–1319 | MR | Zbl

[14] S. N. Chernikov, “O beskonechnykh spetsialnykh gruppakh s konechnym tsentrom”, Matem. sb., 17(59):1 (1945), 105–130 | Zbl

[15] A. N. Ostylovskii, V. P. Shunkov, “O lokalnoi konechnosti odnogo klassa grupp s usloviem minimalnosti dlya podgrupp”, Issledovaniya po teorii grupp, Krasnoyarsk, 1975, 32–48 | MR

[16] A. N. Ostylovskii, “Lokalnaya konechnost nekotorykh grupp s usloviem minimalnosti dlya abelevykh podgrupp”, Algebra i logika, 16:1 (1977), 63–73 | MR | Zbl