Canonical and algebraically closed groups in universal
Algebra i logika, Tome 58 (2019) no. 3, pp. 344-362

Voir la notice de l'article provenant de la source Math-Net.Ru

Using sets of finitely generated Abelian groups closed under the discrimination operator, we describe principal universal classes ${\mathcal{K}}$ within a quasivariety ${\mathfrak{A}}_p$, the class of groups whose periodic part is a $p$-group for a prime $p$. Also the concept of an algebraically closed group in ${\mathcal{K}}$ is introduced, and such groups are classified.
Keywords: Abelian group, universal class, canonical group, discriminability of classes of groups, ${\mathcal{K}}$-algebraically closed groups, ladder vector.
Mots-clés : principal universal class
@article{AL_2019_58_3_a3,
     author = {A. A. Mishchenko and V. N. Remeslennikov and A. V. Treyer},
     title = {Canonical and algebraically closed groups in universal},
     journal = {Algebra i logika},
     pages = {344--362},
     publisher = {mathdoc},
     volume = {58},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2019_58_3_a3/}
}
TY  - JOUR
AU  - A. A. Mishchenko
AU  - V. N. Remeslennikov
AU  - A. V. Treyer
TI  - Canonical and algebraically closed groups in universal
JO  - Algebra i logika
PY  - 2019
SP  - 344
EP  - 362
VL  - 58
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2019_58_3_a3/
LA  - ru
ID  - AL_2019_58_3_a3
ER  - 
%0 Journal Article
%A A. A. Mishchenko
%A V. N. Remeslennikov
%A A. V. Treyer
%T Canonical and algebraically closed groups in universal
%J Algebra i logika
%D 2019
%P 344-362
%V 58
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2019_58_3_a3/
%G ru
%F AL_2019_58_3_a3
A. A. Mishchenko; V. N. Remeslennikov; A. V. Treyer. Canonical and algebraically closed groups in universal. Algebra i logika, Tome 58 (2019) no. 3, pp. 344-362. http://geodesic.mathdoc.fr/item/AL_2019_58_3_a3/