Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2019_58_3_a3, author = {A. A. Mishchenko and V. N. Remeslennikov and A. V. Treyer}, title = {Canonical and algebraically closed groups in universal}, journal = {Algebra i logika}, pages = {344--362}, publisher = {mathdoc}, volume = {58}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2019_58_3_a3/} }
TY - JOUR AU - A. A. Mishchenko AU - V. N. Remeslennikov AU - A. V. Treyer TI - Canonical and algebraically closed groups in universal JO - Algebra i logika PY - 2019 SP - 344 EP - 362 VL - 58 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AL_2019_58_3_a3/ LA - ru ID - AL_2019_58_3_a3 ER -
A. A. Mishchenko; V. N. Remeslennikov; A. V. Treyer. Canonical and algebraically closed groups in universal. Algebra i logika, Tome 58 (2019) no. 3, pp. 344-362. http://geodesic.mathdoc.fr/item/AL_2019_58_3_a3/
[1] E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, Algebraicheskaya geometriya nad algebraicheskimi sistemami, Izd-vo SO RAN, Novosibirsk, 2016
[2] M. Prest, Model theory and modules, Lond. Math. Soc. Lect. Note Ser., 130, Cambridge Univ. Press, Cambrige etc., 1988 | DOI | MR | Zbl
[3] M. Prest, “Model theory and modules”, Handbook of Algebra, v. 3, ed. M. Hazewinkel, Elsevier, Amsterdam, 2003, 227–253 | DOI | MR | Zbl
[4] V. N. Remeslennikov, V. A. Romankov, “Teoretiko-modelnye i algoritmicheskie voprosy teorii grupp”, Itogi nauki i tekhn. Ser. Algebra. Topol. Geom., 21, VINITI, M., 1983, 3–79
[5] N. G. Khisamiev, “Constructive abelian groups”, Handbook of recursive mathematics, v. 2, Stud. Logic Found. Math., 139, Recursive algebra, analysis and combinatorics, eds. Yu. L. Ershov et al., Elsevier, Amsterdam, 1998, 1177–1231 | DOI | MR | Zbl
[6] E. A. Palyutin, “$P$-spektry abelevykh grupp”, Algebra i logika, 53:2 (2014), 216–255 | MR | Zbl
[7] E. A. Palyutin, “$P$-stabilnye abelevy gruppy”, Algebra i logika, 52:5 (2013), 606–631 | MR | Zbl
[8] W. Hodges, Model theory, Encycl. Math. Appl., 42, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl
[9] A. Macintyre, “Model completeness”, Handbook of mathematical logic, Stud. Logic Found. Math., 90, ed. J. Barwise, North-Holland Publ. Co., Amsterdam–New York–Oxford, 1977, 139–180 | DOI | MR
[10] M. Ziegler, “Model theory of modules”, Ann. Pure Appl. Logic, 26:2 (1984), 149–213 | DOI | MR | Zbl
[11] Yu. L. Ershov, Problemy razreshimosti i konstruktivnye modeli, Nauka, M., 1980
[12] W. Szmielew, “Elementary properties of Abelian groups”, Fundam. Math., 41 (1955), 203–271 | DOI | MR | Zbl
[13] A. A. Mischenko, V. N. Remeslennikov, A. V. Treier, “Universalnye invarianty dlya klassov abelevykh grupp”, Algebra i logika, 56:2 (2017), 176–201 | MR
[14] V. N. Remeslennikov, N. S. Romanovskii, “Kvazimnogoobraziya i $q$-kompaktnye klassy abelevykh grupp”, Algebra i logika, 40:6 (2001), 675–684 | MR | Zbl
[15] A. A. Vinogradov, “Kvazimnogoobraziya abelevykh grupp”, Algebra i logika, 4:6 (1965), 15–19 | Zbl
[16] G. Higman, E. Scott, Existentially closed groups, Lond. Math. Soc. Monogr., New Ser., 3, Clarendon Press, Oxford, 1988 | MR | Zbl
[17] P. Eklof, G. Sabbagh, “Model completions and modules”, Ann. Math. Logic, 2:3 (1971), 251–295 | DOI | MR | Zbl
[18] L. Fuks, Beskonechnye abelevy gruppy, v. 1, Mir, M., 1974
[19] L. Fuks, Beskonechnye abelevy gruppy, v. 2, Mir, M., 1977
[20] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Unification theorems in algebraic geometry”, Aspects of infinite groups. A Festschrift in honor of A. Gaglione, Papers of the conf., in honour of A. Gaglione's 60th birthday (Fairfield, USA, March 2007), Algebra Discr. Math. (Hackensack), 1, eds. B. Fine et al., World Sci., Hackensack, NJ, 2008, 80–111 | MR | Zbl
[21] E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Algebraicheskaya geometriya nad algebraicheskimi sistemami. II Osnovaniya”, Fundam. i prikl. matem., 17:1 (2011/2012), 65–106 | MR