Canonical and algebraically closed groups in universal
Algebra i logika, Tome 58 (2019) no. 3, pp. 344-362.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using sets of finitely generated Abelian groups closed under the discrimination operator, we describe principal universal classes ${\mathcal{K}}$ within a quasivariety ${\mathfrak{A}}_p$, the class of groups whose periodic part is a $p$-group for a prime $p$. Also the concept of an algebraically closed group in ${\mathcal{K}}$ is introduced, and such groups are classified.
Keywords: Abelian group, universal class, canonical group, discriminability of classes of groups, ${\mathcal{K}}$-algebraically closed groups, ladder vector.
Mots-clés : principal universal class
@article{AL_2019_58_3_a3,
     author = {A. A. Mishchenko and V. N. Remeslennikov and A. V. Treyer},
     title = {Canonical and algebraically closed groups in universal},
     journal = {Algebra i logika},
     pages = {344--362},
     publisher = {mathdoc},
     volume = {58},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2019_58_3_a3/}
}
TY  - JOUR
AU  - A. A. Mishchenko
AU  - V. N. Remeslennikov
AU  - A. V. Treyer
TI  - Canonical and algebraically closed groups in universal
JO  - Algebra i logika
PY  - 2019
SP  - 344
EP  - 362
VL  - 58
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2019_58_3_a3/
LA  - ru
ID  - AL_2019_58_3_a3
ER  - 
%0 Journal Article
%A A. A. Mishchenko
%A V. N. Remeslennikov
%A A. V. Treyer
%T Canonical and algebraically closed groups in universal
%J Algebra i logika
%D 2019
%P 344-362
%V 58
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2019_58_3_a3/
%G ru
%F AL_2019_58_3_a3
A. A. Mishchenko; V. N. Remeslennikov; A. V. Treyer. Canonical and algebraically closed groups in universal. Algebra i logika, Tome 58 (2019) no. 3, pp. 344-362. http://geodesic.mathdoc.fr/item/AL_2019_58_3_a3/

[1] E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, Algebraicheskaya geometriya nad algebraicheskimi sistemami, Izd-vo SO RAN, Novosibirsk, 2016

[2] M. Prest, Model theory and modules, Lond. Math. Soc. Lect. Note Ser., 130, Cambridge Univ. Press, Cambrige etc., 1988 | DOI | MR | Zbl

[3] M. Prest, “Model theory and modules”, Handbook of Algebra, v. 3, ed. M. Hazewinkel, Elsevier, Amsterdam, 2003, 227–253 | DOI | MR | Zbl

[4] V. N. Remeslennikov, V. A. Romankov, “Teoretiko-modelnye i algoritmicheskie voprosy teorii grupp”, Itogi nauki i tekhn. Ser. Algebra. Topol. Geom., 21, VINITI, M., 1983, 3–79

[5] N. G. Khisamiev, “Constructive abelian groups”, Handbook of recursive mathematics, v. 2, Stud. Logic Found. Math., 139, Recursive algebra, analysis and combinatorics, eds. Yu. L. Ershov et al., Elsevier, Amsterdam, 1998, 1177–1231 | DOI | MR | Zbl

[6] E. A. Palyutin, “$P$-spektry abelevykh grupp”, Algebra i logika, 53:2 (2014), 216–255 | MR | Zbl

[7] E. A. Palyutin, “$P$-stabilnye abelevy gruppy”, Algebra i logika, 52:5 (2013), 606–631 | MR | Zbl

[8] W. Hodges, Model theory, Encycl. Math. Appl., 42, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[9] A. Macintyre, “Model completeness”, Handbook of mathematical logic, Stud. Logic Found. Math., 90, ed. J. Barwise, North-Holland Publ. Co., Amsterdam–New York–Oxford, 1977, 139–180 | DOI | MR

[10] M. Ziegler, “Model theory of modules”, Ann. Pure Appl. Logic, 26:2 (1984), 149–213 | DOI | MR | Zbl

[11] Yu. L. Ershov, Problemy razreshimosti i konstruktivnye modeli, Nauka, M., 1980

[12] W. Szmielew, “Elementary properties of Abelian groups”, Fundam. Math., 41 (1955), 203–271 | DOI | MR | Zbl

[13] A. A. Mischenko, V. N. Remeslennikov, A. V. Treier, “Universalnye invarianty dlya klassov abelevykh grupp”, Algebra i logika, 56:2 (2017), 176–201 | MR

[14] V. N. Remeslennikov, N. S. Romanovskii, “Kvazimnogoobraziya i $q$-kompaktnye klassy abelevykh grupp”, Algebra i logika, 40:6 (2001), 675–684 | MR | Zbl

[15] A. A. Vinogradov, “Kvazimnogoobraziya abelevykh grupp”, Algebra i logika, 4:6 (1965), 15–19 | Zbl

[16] G. Higman, E. Scott, Existentially closed groups, Lond. Math. Soc. Monogr., New Ser., 3, Clarendon Press, Oxford, 1988 | MR | Zbl

[17] P. Eklof, G. Sabbagh, “Model completions and modules”, Ann. Math. Logic, 2:3 (1971), 251–295 | DOI | MR | Zbl

[18] L. Fuks, Beskonechnye abelevy gruppy, v. 1, Mir, M., 1974

[19] L. Fuks, Beskonechnye abelevy gruppy, v. 2, Mir, M., 1977

[20] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Unification theorems in algebraic geometry”, Aspects of infinite groups. A Festschrift in honor of A. Gaglione, Papers of the conf., in honour of A. Gaglione's 60th birthday (Fairfield, USA, March 2007), Algebra Discr. Math. (Hackensack), 1, eds. B. Fine et al., World Sci., Hackensack, NJ, 2008, 80–111 | MR | Zbl

[21] E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Algebraicheskaya geometriya nad algebraicheskimi sistemami. II Osnovaniya”, Fundam. i prikl. matem., 17:1 (2011/2012), 65–106 | MR