Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2019_58_3_a2, author = {M. V. Dorzhieva}, title = {Computable numberings of families of infinite sets}, journal = {Algebra i logika}, pages = {334--343}, publisher = {mathdoc}, volume = {58}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2019_58_3_a2/} }
M. V. Dorzhieva. Computable numberings of families of infinite sets. Algebra i logika, Tome 58 (2019) no. 3, pp. 334-343. http://geodesic.mathdoc.fr/item/AL_2019_58_3_a2/
[1] M. V. Dorzhieva, “Eliminatsiya metarekursii iz teoremy Ouinsa”, Vestn. NGU. Ser. matem., mekh., inform., 14:1 (2014), 35–43 | Zbl
[2] M. V. Dorzhieva, “Odnoznachnaya numeratsiya dlya semeistva vsekh $\Sigma^{1}_{2}$-mnozhestv”, Sib. zhurn. chist. i prikl. matem., 18:2 (2018), 47–52 | MR | Zbl
[3] R. M. Friedberg, “Three theorems on recursive enumeration. I: Decomposition. II: Maximal set. III: Enumeration without duplication”, J. Symb. Log., 23:3 (1958), 309–316 | DOI | MR
[4] S. S. Goncharov, A. Sorbi, “Obobschenno-vychislimye numeratsii i netrivialnye polureshetki Rodzhersa”, Algebra i logika, 36:6 (1997), 621–641 | MR | Zbl
[5] S. S. Goncharov, S. Lempp, D. R. Solomon, “Fridbergovskie numeratsii semeistv $n$-vychislimo perechislimykh mnozhestv”, Algebra i logika, 41:2 (2002), 143–154 | MR | Zbl
[6] J. C. Owings, Jr., “The meta-r.e. sets, but not the $\Pi^1_1$ sets, can be enumerated without repetition”, J. Symb. Log., 35:2 (1970), 223–229 | DOI | MR | Zbl
[7] A. I. Maltsev, Algoritmy i rekursivnye funktsii, Nauka, M., 1965
[8] Kh. Rodzhers, Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972
[9] V. G. Kanovei, V. A. Lyubetskii, Sovremennaya teoriya mnozhestv: borelevskie i proektivnye mnozhestva, MTsNMO, M., 2010
[10] K. Gödel, “The consistency of the axiom of choice and of the generalized continuum-hypothesis”, Proc. Natl. Acad. Sci., 24 (1938), 556–557 | DOI
[11] J. W. Addison, “Separation principles in the hierarchies of classical and effective descriptive set theory”, Fundam. Math., 46 (1959), 123–135 | DOI | MR | Zbl
[12] J. W. Addison, Y. N. Moschovakis, “Some consequences of the axiom of definable determinateness”, Proc. Natl. Acad. Sci., 59 (1968), 708–712 | DOI | MR | Zbl
[13] D. A. Martin, “The axiom of determinateness and reduction principles in the analytical hierarchy”, Bull. Am. Math. Soc., 74:4 (1968), 687–689 | DOI | MR | Zbl
[14] T. Jech, Set theory, Springer Monogr. Math., The third millennium edition, revised and expanded, Springer, Berlin, 2003 | MR | Zbl
[15] J. W. Addison, “Some consequences of the axiom of constructibility”, Fundam. Math., 46 (1959), 337–357 | DOI | MR | Zbl