$\omega$-Independent bases for quasivarieites
Algebra i logika, Tome 58 (2019) no. 3, pp. 320-333
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that there exists a set $\mathcal{R}$ of quasivarieties of torsion-free groups which (a) have an $\omega$-independent basis of quasi-identities in the class $\mathcal{K}_{0}$ of torsion-free groups, (b) do not have an independent basis of quasi-identities in $\mathcal{K}_{0}$, and (c) the intersection of all quasivarieties in $\mathcal{R}$ has an independent quasi-identity basis in $\mathcal{K}_{0}$. The collection of such sets $\mathcal{R}$ has the cardinality of the continuum.
Keywords:
quasivariety, quasi-identity, independent basis, $\omega$-independent basis
Mots-clés : torsion-free group.
Mots-clés : torsion-free group.
@article{AL_2019_58_3_a1,
author = {A. I. Budkin},
title = {$\omega${-Independent} bases for quasivarieites},
journal = {Algebra i logika},
pages = {320--333},
publisher = {mathdoc},
volume = {58},
number = {3},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2019_58_3_a1/}
}
A. I. Budkin. $\omega$-Independent bases for quasivarieites. Algebra i logika, Tome 58 (2019) no. 3, pp. 320-333. http://geodesic.mathdoc.fr/item/AL_2019_58_3_a1/