$\omega$-Independent bases for quasivarieites
Algebra i logika, Tome 58 (2019) no. 3, pp. 320-333.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that there exists a set $\mathcal{R}$ of quasivarieties of torsion-free groups which (a) have an $\omega$-independent basis of quasi-identities in the class $\mathcal{K}_{0}$ of torsion-free groups, (b) do not have an independent basis of quasi-identities in $\mathcal{K}_{0}$, and (c) the intersection of all quasivarieties in $\mathcal{R}$ has an independent quasi-identity basis in $\mathcal{K}_{0}$. The collection of such sets $\mathcal{R}$ has the cardinality of the continuum.
Keywords: quasivariety, quasi-identity, independent basis, $\omega$-independent basis
Mots-clés : torsion-free group.
@article{AL_2019_58_3_a1,
     author = {A. I. Budkin},
     title = {$\omega${-Independent} bases for quasivarieites},
     journal = {Algebra i logika},
     pages = {320--333},
     publisher = {mathdoc},
     volume = {58},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2019_58_3_a1/}
}
TY  - JOUR
AU  - A. I. Budkin
TI  - $\omega$-Independent bases for quasivarieites
JO  - Algebra i logika
PY  - 2019
SP  - 320
EP  - 333
VL  - 58
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2019_58_3_a1/
LA  - ru
ID  - AL_2019_58_3_a1
ER  - 
%0 Journal Article
%A A. I. Budkin
%T $\omega$-Independent bases for quasivarieites
%J Algebra i logika
%D 2019
%P 320-333
%V 58
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2019_58_3_a1/
%G ru
%F AL_2019_58_3_a1
A. I. Budkin. $\omega$-Independent bases for quasivarieites. Algebra i logika, Tome 58 (2019) no. 3, pp. 320-333. http://geodesic.mathdoc.fr/item/AL_2019_58_3_a1/

[1] A. I. Maltsev, “Universalno aksiomatiziruemye podklassy lokalno konechnykh klassov modelei”, Sib. matem. zh., 8:5 (1967), 1005–1014 | Zbl

[2] A. Tarski, “Equational logic and equational theories of algebras”, Contrib. Math. Logic, Proc. Logic Colloq. (Hannover, 1966), Stud. Logic Found. Math., eds. H. A. Schmidt, K. Schütte, H.-J. Thiele (eds.), North-Holland, Amsterdam, 1968, 275–288 | DOI | MR

[3] A. I. Budkin, “Nezavisimaya aksiomatiziruemost kvazimnogoobrazii grupp”, Matem. zametki, 31:6 (1982), 817–826 | MR | Zbl

[4] A. I. Budkin, “Nezavisimaya aksiomatiziruemost kvazimnogoobrazii obobschenno razreshimykh grupp”, Algebra i logika, 25:3 (1986), 249–266 | MR | Zbl

[5] A. I. Budkin, “O nezavisimoi aksiomatiziruemosti kvazimnogoobrazii razreshimykh grupp”, Algebra i logika, 30:2 (1991), 125–153 | MR | Zbl

[6] N. Ya. Medvedev, “O kvazimnogoobraziyakh $l$-grupp i grupp”, Sib. matem. zh., 26:5 (1985), 111–117 | MR | Zbl

[7] A. I. Budkin, “O kvazimnogoobraziyakh grupp, ne imeyuschikh pokrytii”, Matem. zametki, 37:5 (1985), 609–616 | MR | Zbl

[8] A. N. Fedorov, “Kvazitozhdestva svobodnoi 2-nilpotentnoi gruppy”, Matem. zametki, 40:5 (1986), 590–597 | MR | Zbl

[9] A. N. Fedorov, “O podkvazimnogoobraziyakh nilpotentnykh minimalnykh ne abelevykh mnogoobrazii grupp”, Sib. matem. zh., 21:6 (1980), 117–131 | MR | Zbl

[10] V. I. Tumanov, “O konechnykh reshetkakh, ne imeyuschikh nezavisimogo bazisa kvazitozhdestv”, Matem. zametki, 36:5 (1984), 625–634 | MR | Zbl

[11] V. K. Kartashov, “Kvazimnogoobraziya unarov”, Matem. zametki, 27:1 (1980), 7–20 | MR | Zbl

[12] S. V. Sizyi, “Kvazimnogoobraziya grafov”, Sib. matem. zh., 35:4 (1994), 879–892 | MR

[13] A. V. Kravchenko, “O slozhnosti reshetok kvazimnogoobrazii dlya mnogoobrazii unarnykh algebr. II”, Sib. elektron. matem. izv., 13 (2016), 388–394 http://semr.math.nsc.ru/v13/p388-394.pdf | Zbl

[14] A. Basheyeva, A. Nurakunov, M. Schwidefsky, A. Zamojska-Dzienio, “Lattices of subclasses. III”, Sib. elektron. matem. izv., 14 (2017), 252–263 http://semr.math.nsc.ru/v14/p252-263.pdf | MR | Zbl

[15] A. V. Kravchenko, A. V. Yakovlev, “Kvazimnogoobraziya grafov i nezavisimaya baziruemost”, Matem. tr., 20:2 (2017), 80–89 | Zbl

[16] A. V. Kartashova, “Antimnogoobraziya unarov”, Algebra i logika, 50:4 (2011), 521–532 | MR | Zbl

[17] A. I. Budkin, “O nezavisimoi aksiomatiziruemosti kvazimnogoobrazii universalnykh algebr”, Matem. zametki, 56:4 (1994), 28–37 | Zbl

[18] A. O. Basheeva, A. V. Yakovlev, “Ob $\omega$-nezavisimykh bazisakh kvazitozhdestv”, Sib. elektron. matem. izv., 14 (2017), 838–847 http://semr.math.nsc.ru/v14/p838-847.pdf | MR

[19] V. A. Gorbunov, Algebraicheskaya teoriya kvazimnogoobrazii, Sibirskaya shkola algebry i logiki, Nauch. kniga, Novosibirsk, 1999

[20] V. A. Gorbunov, “Pokrytiya v reshetkakh kvazimnogoobrazii i nezavisimaya aksiomatiziruemost”, Algebra i logika, 16:5 (1977), 507–548 | MR | Zbl

[21] A. V. Kravchenko, A. M. Nurakunov, M. V. Schwidefsky, “On quasi-equational bases for differential groupoids and unary algebras”, Sib. elektron. matem. izv., 14 (2017), 1330–1337 http://semr.math.nsc.ru/v14/p1330-1337.pdf | MR | Zbl

[22] A. I. Budkin, V. A. Gorbunov, “K teorii kvazimnogoobrazii algebraicheskikh sistem”, Algebra i logika, 14:2 (1975), 123–142 | MR | Zbl

[23] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970 | MR

[24] A. I. Budkin, “O kvazitozhdestvakh v svobodnoi gruppe”, Algebra i logika, 15:1 (1976), 39–52

[25] H. B. Griffiths, “The fundamental group of a surface, and a theorem of Schreier”, Acta Math., 110:1 (1963), 1–17 | DOI | MR | Zbl