$\omega$-Independent bases for quasivarieites
Algebra i logika, Tome 58 (2019) no. 3, pp. 320-333

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that there exists a set $\mathcal{R}$ of quasivarieties of torsion-free groups which (a) have an $\omega$-independent basis of quasi-identities in the class $\mathcal{K}_{0}$ of torsion-free groups, (b) do not have an independent basis of quasi-identities in $\mathcal{K}_{0}$, and (c) the intersection of all quasivarieties in $\mathcal{R}$ has an independent quasi-identity basis in $\mathcal{K}_{0}$. The collection of such sets $\mathcal{R}$ has the cardinality of the continuum.
Keywords: quasivariety, quasi-identity, independent basis, $\omega$-independent basis
Mots-clés : torsion-free group.
@article{AL_2019_58_3_a1,
     author = {A. I. Budkin},
     title = {$\omega${-Independent} bases for quasivarieites},
     journal = {Algebra i logika},
     pages = {320--333},
     publisher = {mathdoc},
     volume = {58},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2019_58_3_a1/}
}
TY  - JOUR
AU  - A. I. Budkin
TI  - $\omega$-Independent bases for quasivarieites
JO  - Algebra i logika
PY  - 2019
SP  - 320
EP  - 333
VL  - 58
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2019_58_3_a1/
LA  - ru
ID  - AL_2019_58_3_a1
ER  - 
%0 Journal Article
%A A. I. Budkin
%T $\omega$-Independent bases for quasivarieites
%J Algebra i logika
%D 2019
%P 320-333
%V 58
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2019_58_3_a1/
%G ru
%F AL_2019_58_3_a1
A. I. Budkin. $\omega$-Independent bases for quasivarieites. Algebra i logika, Tome 58 (2019) no. 3, pp. 320-333. http://geodesic.mathdoc.fr/item/AL_2019_58_3_a1/