Weakly precomplete equivalence relations in the Ershov hierarchy
Algebra i logika, Tome 58 (2019) no. 3, pp. 297-319
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the computable reducibility $\leq_c$ for equivalence relations in the Ershov hierarchy. For an arbitrary notation $a$ for a nonzero computable ordinal, it is stated that there exist a $\Pi^{-1}_a$-universal equivalence relation and a weakly precomplete $\Sigma^{-1}_a$-universal equivalence relation. We prove that for any $\Sigma^{-1}_a$ equivalence relation $E$, there is a weakly precomplete $\Sigma^{-1}_a$ equivalence relation $F$ such that $E\leq_c F$. For finite levels $\Sigma^{-1}_m$ in the Ershov hierarchy at which $m=4k+1$ or $m=4k+2$, it is shown that there exist infinitely many $\leq_c$-degrees containing weakly precomplete, proper $\Sigma^{-1}_m$ equivalence relations.
Keywords:
Ershov hierarchy, computable reducibility, universal equivalence relation, weakly precomplete equivalence relation.
Mots-clés : equivalence relation
Mots-clés : equivalence relation
@article{AL_2019_58_3_a0,
author = {N. A. Bazhenov and B. S. Kalmurzaev},
title = {Weakly precomplete equivalence relations in the {Ershov} hierarchy},
journal = {Algebra i logika},
pages = {297--319},
publisher = {mathdoc},
volume = {58},
number = {3},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2019_58_3_a0/}
}
N. A. Bazhenov; B. S. Kalmurzaev. Weakly precomplete equivalence relations in the Ershov hierarchy. Algebra i logika, Tome 58 (2019) no. 3, pp. 297-319. http://geodesic.mathdoc.fr/item/AL_2019_58_3_a0/