Finite generalized soluble groups
Algebra i logika, Tome 58 (2019) no. 2, pp. 252-270.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\sigma =\{\sigma_{i} \mid i\in I\}$ be a partition of the set of all primes $\mathbb{P}$ and $G$ a finite group. Suppose $\sigma (G)=\{\sigma_{i} \mid \sigma_{i}\cap \pi (G)\ne \varnothing\}$. A set $\mathcal{H}$ of subgroups of $G$ is called a complete Hall $\sigma $-set of $G$ if every nontrivial member of $\mathcal{H}$ is a $\sigma_{i}$-subgroup of $G$ for some $i\in I$ and $\mathcal{H}$ contains exactly one Hall $\sigma_{i}$-subgroup of $G$ for every $i$ such that $\sigma_{i}\in \sigma (G)$. A group $G$ is $\sigma$-full if $G$ possesses a complete Hall $\sigma $-set. A complete Hall $\sigma $-set $\mathcal{H}$ of $G$ is called a $\sigma$-basis of $G$ if every two subgroups $A, B \in\mathcal{H}$ are permutable, i.e., $AB=BA$. In this paper, we study properties of finite groups having a $\sigma$-basis. It is proved that if $G$ has a $\sigma$-basis, then $G$ is generalized $\sigma$-soluble, i.e, $|\sigma (H/K)|\leq 2$ for every chief factor $H/K$ of $G$. Moreover, every complete Hall $\sigma$-set of a $\sigma$-full group $G$ forms a $\sigma$-basis of $G$ iff $G$ is generalized $\sigma$-soluble, and for the automorphism group $G/C_{G}(H/K)$ induced by $G$ on any its chief factor $H/K$, we have $|\sigma (G/C_{G}(H/K))|\leq 2$ and also $\sigma(H/K)\subseteq \sigma (G/C_{G}(H/K))$ in the case $|\sigma (G/C_{G}(H/K))|= 2$.
Keywords: finite group, Hall subgroup, $\sigma$-soluble subgroup, $\sigma$-basis, generalized ${\sigma}$-soluble group.
@article{AL_2019_58_2_a6,
     author = {J. Huang and B. Hu and A. N. Skiba},
     title = {Finite generalized soluble groups},
     journal = {Algebra i logika},
     pages = {252--270},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2019_58_2_a6/}
}
TY  - JOUR
AU  - J. Huang
AU  - B. Hu
AU  - A. N. Skiba
TI  - Finite generalized soluble groups
JO  - Algebra i logika
PY  - 2019
SP  - 252
EP  - 270
VL  - 58
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2019_58_2_a6/
LA  - ru
ID  - AL_2019_58_2_a6
ER  - 
%0 Journal Article
%A J. Huang
%A B. Hu
%A A. N. Skiba
%T Finite generalized soluble groups
%J Algebra i logika
%D 2019
%P 252-270
%V 58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2019_58_2_a6/
%G ru
%F AL_2019_58_2_a6
J. Huang; B. Hu; A. N. Skiba. Finite generalized soluble groups. Algebra i logika, Tome 58 (2019) no. 2, pp. 252-270. http://geodesic.mathdoc.fr/item/AL_2019_58_2_a6/

[1] A. N. Skiba, “On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups”, J. Algebra, 436 (2015), 1–16 | DOI | MR | Zbl

[2] A. N. Skiba, “On some results in the theory of finite partially soluble groups”, Commun. Math. Stat., 4:3 (2016), 281–309 | DOI | MR | Zbl

[3] A. N. Skiba, “A generalization of a Hall theorem”, J. Algebra Appl., 15:5 (2016), 1650085, 13 pp. | DOI | MR | Zbl

[4] A. N. Skiba, “Some characterizations of finite $\sigma$-soluble $P\sigma T$-groups”, J. Algebra, 495 (2018), 114–129 | DOI | MR | Zbl

[5] I. M. Isaacs, “Semipermutable $\pi$-subgroups”, Arch. Math., 102:1 (2014), 1–6 | DOI | MR | Zbl

[6] M. T. Borovikov, “Gruppy s perestanovochnymi podgruppami vzaimno prostykh poryadkov”, Voprosy algebry, 5, Universitetskoe, Minsk, 1990, 80–82

[7] B. Huppert, Endliche Gruppen. I, Grundlehren mathem. Wiss. Einzeldarstel., 134, Springer-Verlag, Berlin a.o., 1967 | DOI | MR | Zbl

[8] X. Yin, N. Yang, “Finite groups with permutable Hall subgroups”, Front. Math. China, 12:5 (2017), 1265–1275 | DOI | MR | Zbl

[9] J. Zhang, “Sylow numbers of finite groups”, J. Algebra, 176:1 (1995), 111–123 | DOI | MR | Zbl

[10] Venbin Go, “Konechnye gruppy s zadannymi indeksami normalizatorov silovskikh podgrupp”, Sib. matem. zh., 37:2, 295—300 | MR

[11] K. Doerk, T. Hawkes, Finite soluble groups, De Gruyter Expo. Math., 4, Walter de Gruyter, Berlin etc., 1992 | MR

[12] L. A. Shemetkov, A. N. Skiba, Formatsii algebraicheskikh sistem, Nauka, M., 1989 | MR

[13] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970 | MR

[14] A. Ballester-Bolinches, L. M. Ezquerro, Classes of finite groups, Math. Appl. (Springer), 584, Springer-Verlag, Dordrecht, 2006 | MR | Zbl

[15] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of finite groups, de Gruyter Exp. Math., 53, Walter de Gruyter, Berlin, 2010 | DOI | MR | Zbl