Maximality of the countable spectrum in small quite $o$-minimal theories
Algebra i logika, Tome 58 (2019) no. 2, pp. 200-209.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a criterion for the countable spectrum to be maximal in small binary quite $o$-minimal theories of finite convexity rank.
Keywords: weak $o$-minimality, quite $o$-minimality, countable spectrum, convexity rank.
@article{AL_2019_58_2_a3,
     author = {B. Sh. Kulpeshov},
     title = {Maximality of the countable spectrum in small quite $o$-minimal theories},
     journal = {Algebra i logika},
     pages = {200--209},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2019_58_2_a3/}
}
TY  - JOUR
AU  - B. Sh. Kulpeshov
TI  - Maximality of the countable spectrum in small quite $o$-minimal theories
JO  - Algebra i logika
PY  - 2019
SP  - 200
EP  - 209
VL  - 58
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2019_58_2_a3/
LA  - ru
ID  - AL_2019_58_2_a3
ER  - 
%0 Journal Article
%A B. Sh. Kulpeshov
%T Maximality of the countable spectrum in small quite $o$-minimal theories
%J Algebra i logika
%D 2019
%P 200-209
%V 58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2019_58_2_a3/
%G ru
%F AL_2019_58_2_a3
B. Sh. Kulpeshov. Maximality of the countable spectrum in small quite $o$-minimal theories. Algebra i logika, Tome 58 (2019) no. 2, pp. 200-209. http://geodesic.mathdoc.fr/item/AL_2019_58_2_a3/

[1] D. Macpherson, D. Marker, Ch. Steinhorn, “Weakly $o$-minimal structures and real closed fields”, Trans. Am. Math. Soc., 352:12 (2000), 5435–5483 | DOI | MR | Zbl

[2] B. S. Baizhanov, “Expansion of a model of a weakly $o$-minimal theory by a family of unary predicates”, J. Symb. Log., 66:3 (2001), 1382–1414 | DOI | MR | Zbl

[3] B. Sh. Kulpeshov, “Rang vypuklosti i ortogonalnost v slabo $o$-minimalnykh teoriyakh”, Izv. NAN RK. Seriya fiz. matem., 2003, no. 227, 26–31 | MR

[4] B. Sh. Kulpeshov, S. V. Sudoplatov, “Vaught's conjecture for quite $o$-minimal theories”, Ann. Pure Appl. Logic, 168:1 (2017), 129–149 | DOI | MR | Zbl

[5] L. L. Mayer, “Vaught's conjecture for $o$-minimal theories”, J. Symb. Log., 53:1 (1988), 146–159 | DOI | MR | Zbl

[6] B. S. Baizhanov, “One-types in weakly $o$-minimal theories”, Proc. Inf. Control Problems Inst., Almaty, 1996, 75–88

[7] B. S. Baizhanov, B. Sh. Kulpeshov, “On behaviour of $2$-formulas in weakly $o$-minimal theories”, Mathematical logic in Asia, Proc. the 9th Asian logic conf. (Novosibirsk, Russia, August 16–19, 2005), eds. S. S. Goncharov et al., World Scientific, Hackensack, NJ, 2006, 31–40 | DOI | MR | Zbl

[8] B. Sh. Kulpeshov, “Weakly $o$-minimal structures and some of their properties”, J. Symb. Log., 63:4 (1998), 1511–1528 | DOI | MR | Zbl

[9] B. Sh. Kulpeshov, “Schetno-kategorichnye vpolne $o$-minimalnye teorii”, Vestn. NGU. Ser. matem., mekh., inform., 11:1 (2011), 45—57 | Zbl

[10] B. Sh. Kulpeshov, “Criterion for binarity of $\aleph_0$-categorical weakly $o$-minimal theories”, Ann. Pure Appl. Logic, 145:3 (2007), 354–367 | DOI | MR | Zbl

[11] K. Ikeda, A. Pillay, A. Tsuboi, “On theories having three countable models”, Math. Log. Q, 44:2 (1998), 161–166 | DOI | MR | Zbl

[12] S. V. Sudoplatov, Klassifikatsiya schetnykh modelei polnykh teorii, Monografii NGTU, v. 1, Izd-vo NGTU, Novosibirsk, 2014

[13] S. V. Sudoplatov, Klassifikatsiya schetnykh modelei polnykh teorii, Monografii NGTU, v. 2, Izd-vo NGTU, Novosibirsk, 2014

[14] B. Sh. Kulpeshov, S. V. Sudoplatov, “Lineino uporyadochennye teorii, blizkie k schetno kategorichnym”, Matem. zametki, 101:3 (2017), 413–424 | DOI | MR | Zbl