Projections of semisimple Lie algebras
Algebra i logika, Tome 58 (2019) no. 2, pp. 149-166
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that the property of being a semisimple algebra is preserved under projections (lattice isomorphisms) for locally finite-dimensional Lie algebras over a perfect field of characteristic not equal to 2 and 3, except for the projection of a three-dimensional simple nonsplit algebra. Over fields with the same restrictions, we give a lattice characterization of a three-dimensional simple split Lie algebra and a direct product of a one-dimensional algebra and a three-dimensional simple nonsplit one.
Keywords:
subalgebra lattice, lattice isomorphism, semisimple Lie algebras
Mots-clés : modular subalgebra.
Mots-clés : modular subalgebra.
@article{AL_2019_58_2_a0,
author = {A. G. Gein},
title = {Projections of semisimple {Lie} algebras},
journal = {Algebra i logika},
pages = {149--166},
publisher = {mathdoc},
volume = {58},
number = {2},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2019_58_2_a0/}
}
A. G. Gein. Projections of semisimple Lie algebras. Algebra i logika, Tome 58 (2019) no. 2, pp. 149-166. http://geodesic.mathdoc.fr/item/AL_2019_58_2_a0/