Projections of semisimple Lie algebras
Algebra i logika, Tome 58 (2019) no. 2, pp. 149-166.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the property of being a semisimple algebra is preserved under projections (lattice isomorphisms) for locally finite-dimensional Lie algebras over a perfect field of characteristic not equal to 2 and 3, except for the projection of a three-dimensional simple nonsplit algebra. Over fields with the same restrictions, we give a lattice characterization of a three-dimensional simple split Lie algebra and a direct product of a one-dimensional algebra and a three-dimensional simple nonsplit one.
Keywords: subalgebra lattice, lattice isomorphism, semisimple Lie algebras
Mots-clés : modular subalgebra.
@article{AL_2019_58_2_a0,
     author = {A. G. Gein},
     title = {Projections of semisimple {Lie} algebras},
     journal = {Algebra i logika},
     pages = {149--166},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2019_58_2_a0/}
}
TY  - JOUR
AU  - A. G. Gein
TI  - Projections of semisimple Lie algebras
JO  - Algebra i logika
PY  - 2019
SP  - 149
EP  - 166
VL  - 58
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2019_58_2_a0/
LA  - ru
ID  - AL_2019_58_2_a0
ER  - 
%0 Journal Article
%A A. G. Gein
%T Projections of semisimple Lie algebras
%J Algebra i logika
%D 2019
%P 149-166
%V 58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2019_58_2_a0/
%G ru
%F AL_2019_58_2_a0
A. G. Gein. Projections of semisimple Lie algebras. Algebra i logika, Tome 58 (2019) no. 2, pp. 149-166. http://geodesic.mathdoc.fr/item/AL_2019_58_2_a0/

[1] D. W. Barnes, “Lattice isomorphisms of Lie algebras”, J. Aust. Math. Soc., 4:4 (1964), 470–475 | DOI | MR | Zbl

[2] M. Goto, “Lattices of subalgebras of real Lie algebras”, J. Algebra, 11:1 (1969), 6–24 | DOI | MR | Zbl

[3] A. G. Gein, “Proektirovaniya algebr Li kharakteristiki 0”, Izv. vuzov. Matem, 1978, no. 4, 26–31 | Zbl

[4] G. Grettser, Obschaya teoriya reshetok, Mir, M., 1982

[5] R. K. Amayo, J. Schwarz, “Modularity in Lie algebras”, Hiroshima Math. J., 10 (1980), 311–322 | DOI | MR | Zbl

[6] A. G. Gein, “O modulyarnykh podalgebrakh algebr Li”, Issledovaniya algebraicheskikh sistem po svoistvam ikh podsistem, Mezhvuz. sb., Ural. gos. un-t, Sverdlovsk, 1987, 27–33 | MR

[7] A. G. Gein, “Modulyarnyi zakon i otnositelnye dopolneniya v reshetke podalgebr algebry Li”, Izv. vuzov. Matem., 1987, no. 3, 18–25 | MR

[8] N. Dzhekobson, Algebry Li, Mir, M., 1964

[9] A. A. Premet, K. N. Semenov, “Mnogoobraziya finitno approksimiruemykh algebr Li”, Matem. sb., 137(179):1 (9) (1988), 103–113 | Zbl

[10] V. R. Varea, “Lie algebras whose proper subalgebras are either semisimple, abelian or almost-abelian”, Hiroshima Math. J., 24:2 (1994), 221–241 | DOI | MR | Zbl

[11] A. G. Gein, “Konechnomernye prostye algebry Li s reshetkoi podalgebr dliny 3”, Izv. vuzov. Matem., 2012, no. 10, 74–78 | MR | Zbl

[12] A. G. Gein, “Modulyarnye podalgebry i proektirovaniya lokalno konechnomernykh algebr Li kharakteristiki 0”, Algebraicheskie sistemy. Mnogoobraziya. Reshetki podsistem, Ural. gos. un-t, Sverdlovsk, 1983, 39–51 | MR

[13] A. G. Gein, “O proektirovaniyakh poluprostykh algebr Li”, Mezhd. konf. "‘Maltsevskie chteniya"’, Tez. dokl. (20–24 noyabrya 2017 g., Novosibirsk), IM SO RAN i NGU, Novosibirsk, 2017, 110 http://www.math.nsc.ru/conference/malmeet/17/malmeet17.pdf