Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2019_58_1_a7, author = {I. Sh. Kalimullin and R. Miller}, title = {Primitive recursive fields and categoricity}, journal = {Algebra i logika}, pages = {132--138}, publisher = {mathdoc}, volume = {58}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2019_58_1_a7/} }
I. Sh. Kalimullin; R. Miller. Primitive recursive fields and categoricity. Algebra i logika, Tome 58 (2019) no. 1, pp. 132-138. http://geodesic.mathdoc.fr/item/AL_2019_58_1_a7/
[1] R. Miller, V. Poonen, N. Schoutens, A. Shlapentokh, “A computable functor from graphs to fields”, J. Symb. Log., 83:1 (2018), 326–348 | MR | Zbl
[2] P. E. Alaev, “Struktury, vychislimye za polinomialnoe vremya. I”, Algebra i logika, 55:6 (2016), 647–669
[3] P. E. Alaev, “Struktury, vychislimye za polinomialnoe vremya. II”, Algebra i logika, 56:6 (2017), 651–670
[4] P. E. Alaev, “Kategorichnost dlya primitivno rekursivnykh i polinomialnykh bulevykh algebr”, Algebra i logika, 57:4 (2018), 389–425 | Zbl
[5] P. Alaev, V. Selivanov, “Polynomial-time presentations of algebraic number fields”, Sailing routes in the world of computation, 14th conf. comput. Europe CiE 2018 (Kiel, Germany, July 30–August 3, 2018), Lect. Notes Comput. Sci., 10936, eds. F. Manea et al., Springer, Cham, 2018, 20–29 | MR | Zbl
[6] I. Kalimullin, A. Melnikov, K. M. Ng, “Algebraic structures computable without delay”, Theoret. Comput. Sci., 674 (2017), 73–98 | MR | Zbl
[7] I. Sh. Kalimullin, A. G. Melnikov, K. M. Ng, “Razlichnye versii kategorichnosti bez zaderzhek”, Algebra i logika, 56:2 (2017), 256–266 | Zbl
[8] A. Frolov, I. Kalimullin, R. Miller, “Spectra of algebraic fields and subfields”, Mathematical theory and computational practice, 5th conf. comput. Europe CiE 2009 (Heidelberg, Germany, July 19–24, 2009), Lect. Notes Comput. Sci., 5635, eds. K. Ambos-Spies et al., Springer-Verlag, Berlin, 2009, 232–241 | MR | Zbl
[9] V. V. Kozminykh, “O predstavlenii chastichno rekursivnykh funktsii v vide superpozitsii”, Algebra i logika, 11:3 (1972), 270–294 | Zbl
[10] H.M. Edwards, Galois theory, Grad. Texts Math., 101, Springer-Verlag, New York etc., 1984 | MR | Zbl