Generating triples of involutions of groups of Lie type of rank two over finite fields
Algebra i logika, Tome 58 (2019) no. 1, pp. 84-107

Voir la notice de l'article provenant de la source Math-Net.Ru

For finite simple groups $U_5(2^n)$, $n>1$, $U_4(q)$, and $S_4(q)$, where $q$ is a power of a prime $p > 2$, $q-1\ne0\pmod4$, and $q\ne 3$, we explicitly specify generating triples of involutions two of which commute. As a corollary, it is inferred that for the given simple groups, the minimum number of generating conjugate involutions, whose product equals $1$, is equal to $5$.
Keywords: group of Lie type, finite simple group, generating triples of involutions.
@article{AL_2019_58_1_a5,
     author = {Ya. N. Nuzhin},
     title = {Generating triples of involutions of groups of {Lie} type of rank two over finite fields},
     journal = {Algebra i logika},
     pages = {84--107},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2019_58_1_a5/}
}
TY  - JOUR
AU  - Ya. N. Nuzhin
TI  - Generating triples of involutions of groups of Lie type of rank two over finite fields
JO  - Algebra i logika
PY  - 2019
SP  - 84
EP  - 107
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2019_58_1_a5/
LA  - ru
ID  - AL_2019_58_1_a5
ER  - 
%0 Journal Article
%A Ya. N. Nuzhin
%T Generating triples of involutions of groups of Lie type of rank two over finite fields
%J Algebra i logika
%D 2019
%P 84-107
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2019_58_1_a5/
%G ru
%F AL_2019_58_1_a5
Ya. N. Nuzhin. Generating triples of involutions of groups of Lie type of rank two over finite fields. Algebra i logika, Tome 58 (2019) no. 1, pp. 84-107. http://geodesic.mathdoc.fr/item/AL_2019_58_1_a5/