Generating triples of involutions of groups of Lie type of rank two over finite fields
Algebra i logika, Tome 58 (2019) no. 1, pp. 84-107
Voir la notice de l'article provenant de la source Math-Net.Ru
For finite simple groups $U_5(2^n)$, $n>1$, $U_4(q)$, and $S_4(q)$, where $q$ is a power of a prime $p > 2$, $q-1\ne0\pmod4$, and $q\ne 3$, we explicitly specify generating triples of involutions two of which commute. As a corollary, it is inferred that for the given simple groups, the minimum number of generating conjugate involutions, whose product equals $1$, is equal to $5$.
Keywords:
group of Lie type, finite simple group, generating triples of involutions.
@article{AL_2019_58_1_a5,
author = {Ya. N. Nuzhin},
title = {Generating triples of involutions of groups of {Lie} type of rank two over finite fields},
journal = {Algebra i logika},
pages = {84--107},
publisher = {mathdoc},
volume = {58},
number = {1},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2019_58_1_a5/}
}
Ya. N. Nuzhin. Generating triples of involutions of groups of Lie type of rank two over finite fields. Algebra i logika, Tome 58 (2019) no. 1, pp. 84-107. http://geodesic.mathdoc.fr/item/AL_2019_58_1_a5/