Hochschild cohomologies of the associative conformal algebra $\mathrm{Cend}_{1,x}$
Algebra i logika, Tome 58 (2019) no. 1, pp. 52-68

Voir la notice de l'article provenant de la source Math-Net.Ru

It is stated that the second Hochshild cohomology group of the associative conformal algebra $\mathrm{Cend}_{1,x}$ with values in any bimodule is trivial. Consequently, the given algebra splits off in every extension with nilpotent kernel.
Mots-clés : associative conformal algebra
Keywords: split-off radical, Hochshild cohomologies.
@article{AL_2019_58_1_a3,
     author = {R. A. Kozlov},
     title = {Hochschild cohomologies of the associative conformal algebra $\mathrm{Cend}_{1,x}$},
     journal = {Algebra i logika},
     pages = {52--68},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2019_58_1_a3/}
}
TY  - JOUR
AU  - R. A. Kozlov
TI  - Hochschild cohomologies of the associative conformal algebra $\mathrm{Cend}_{1,x}$
JO  - Algebra i logika
PY  - 2019
SP  - 52
EP  - 68
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2019_58_1_a3/
LA  - ru
ID  - AL_2019_58_1_a3
ER  - 
%0 Journal Article
%A R. A. Kozlov
%T Hochschild cohomologies of the associative conformal algebra $\mathrm{Cend}_{1,x}$
%J Algebra i logika
%D 2019
%P 52-68
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2019_58_1_a3/
%G ru
%F AL_2019_58_1_a3
R. A. Kozlov. Hochschild cohomologies of the associative conformal algebra $\mathrm{Cend}_{1,x}$. Algebra i logika, Tome 58 (2019) no. 1, pp. 52-68. http://geodesic.mathdoc.fr/item/AL_2019_58_1_a3/